
You may be familiar with the 
scene: you hear the sound of 
your decidedly non-technical 

partner in the next room shouting “My 
Internet isn’t working!” Of course, pains-
takingly checking if the router really is 
talking to your service provider, 
and if the DNS server is reach-
able, would be one possible 
response. But troubleshoot-
ing is a lot easier if you 
have a software tool that 
keeps an eye on critical 
functions and gives you 
a friendly web-based 
summary like the one 
shown in Figure 1.

  An open source tool 
called Nagios is perfect 
for this kind of moni-
toring. The developers 
have a long list of 
plugins at [2]. The 
plugins can help you 
monitor websites, 
databases, networks, 
and many other 
things. And if you 
have a special re-
quirement not cov-
ered by the standard 
plugins, you can 
tailor a plugin to 
meet your 
needs.

Just to 
give you 

an example, Nagios can perform ongoing 
tests to check if a hosting provider is giv-
ing you a powerful server with enough 
resources, instead of overloading the 
server by hosting too many websites on 

it. If, for security reasons, the 
Nagios installation on the local 

machine does not have di-
rect shell access to the 

provider-side host, you 
can simply install an 
agent on the website.

IO-
Statistics
Dropping the 
iostat.cgi agent 
script (Listing 1) 
into the CGI di-
rectory on the 
web server you 
want to investi-
gate will help 
here. Triggered 
by a HTTP re-
quest, the script 
calls the iostat 
Linux command 
and sends some 
of its output back 
to the client, 
which happens 
to be a Nagios 
plugin. The 
plugin then 
interprets the 

results and 

uses the exit code to tell the Nagios 
application if the values are OK, or if a 
problem has occurred (Table 1).

The CGI script, iostat.cgi, uses the tap 
function from the CPAN Sysadm::Install 
module to call the iostat command with 
the values 1 and 2 (Line 8). Due to the 
interval value of 1, and the count value 
of 2, it measures the CPU performance 
and hard disk I/ O twice within a sec-
ond and creates the output in Figure 3.

The first test gives you the mean val-
ues since the last reboot, while the sec-

ond is more interesting for Nagios, since 
it aggregates performance over one sec-
ond while the command is running. The 
%idle column tells you how long the 
CPU was available, and %iowait mea-
sures how long the CPU had to wait for 
the hard disk. From the customer’s point 
of view, a high value for %idle and a low 
value for %iowait are most desirable.

The script iostat.cgi in Listing 1 reads 
the output from iostat and discards the 
first set of measured values. For this, it 
uses the regular expression $RE{num} 
{real} from the Regexp::Common reposi-
tory to parse the numeric values. Follow-
ing the obligatory HTTP header, it re-
turns a string like user 2.99 nice 0.00 sys 
0.00 iowait 0.00 idle 96.52. The so-called 
zero-width assertion, \G (Line 20), pre-
vents the regex engine from jumping 
back to the start of the text each time 
and tells it to continue the search after 
the last match.

Borderline Load
Nagios-side, the plugin in Listing 2 uses 
LWP::Simple to call the CGI script we 
just looked at on the server, picks up the 
output line, and runs split to split the 
output into fields which it then stores in 
the %values hash. If the CPU availability 
value is lower than 50 percent, the plu-
gin reports a critical state; it just issues a 
warning for a value of less than 80 per-
cent. The same principle applies to the 
iowait value, but the threshold values 
are 10 and 20 percent in this case.

You can build a plugin in Perl to harness the power of the Nagios  

monitoring tool. BY MICHAEL SCHILLI

Building your own Nagios plugins

THE WATCHER

Exit Value Text Meaning
0 OK Everything is fine
1 WARNING Service problem
2 CRITICAL Critical service  
  problem
3 UNKNOWN Problem with the  
  plugin

Table 1: Exit Values

Perl: Nagios PluginsPROGRAMMING

70 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M



The CPAN Nagios::Clientstatus mod-
ule offloads some of the work off the 
plugin by checking if the plugin has 
been passed all the required parameters. 
The exitvalue() method also under-

stands strings such as warning, rather 
than the numeric value of 1 from the 
world of Nagios. If you run the plugin at 
the command line by entering check_io-
stat -url=http://server/cgi/iostat.cgi, the 

plugin gives you the following lines of 
output:

IOSTAT OK - user 2.99 U
nice 0.00 sys 0.00
iowait 0.00 idle 96.52

Nagios will be calling the plugin just like 
this later, and it will interpret the exit 
value and later display the plugin’s text 
output on stdout. Note that Nagios::Cli-
entstatus requires version 2.35 or newer 
of Getopt::Long.

Integrating the Plugin
To add the new plugin to an existing 
Nagios installation, the admin user 
needs to copy the check_iostat script to 
the /usr/local/nagios/libexec directory 
and make the script executable. Figure 4 
adds a template titled ez-service to the 
Nagios configuration; this will make it 
easier to add more services later. In Nag-
ios configurations, it is common practice 
to define templates, which are easily 
identifiable by their register 0 entries. 
Service definitions can be used later to 
add special entries to the templates.

Figure 1: The Nagios overview page shows you that local tests have completed successfully, 

but the router, and anything that lies beyond it, is unreachable.

PROGRAMMINGPerl: Nagios Plugins

71ISSUE 67 JUNE 2006W W W. L I N U X- M A G A Z I N E . C O M



The define service configuration in 
Figure 4 defines the new Iostat service. It 
builds on the use ez-service template, 
which we defined earlier, and accepts 
various parameters for test runs, email 
notification, and many other things. 
These template settings are then inher-
ited by the service definition and can be 
overridden as necessary.

Some settings and their meanings: the 
notification_interval 0 entry prevents 
Nagios from sending multiple mails to 
report a single issue. Admins can set the 
normal_check_interval to specify the in-
terval between service tests in minutes, 
and max_check_attempts to specify how 
many tests you will allow to fail before 
Nagios should notify you. The service_
notification_options specify the state 
changes that need to occur before Nag-
ios sends a message. The w option refers 
to a warning, u stands for unknown, c 
for critical, and r for recovery. A similar 
principle applies to host_notification_ 
options; besides unknown and recovery, 
it features the d for down option.

The Lone Server
If the Nagios server is cut off from the 
rest of the world due to a network fail-
ure, you can’t expect it to send you an 
email warning via the Internet. In this 
case, admins at least get a recovery mail 
as soon as the problem has been reme-
died. Nagios also supports event han-
dlers to define actions that Nagios per-
forms when it detects a problem. The 
system can solve some problems autono-
mously without admin intervention.

With Nagios 2.0, a service is always 
mapped to a host that is independently 
tested for availability. The host specifica-
tion requires entries in the configuration 
file. The host_name dreamhost line in 
the sample configuration defines the 
host’s name, by which it will be referred 
to later on the Nagios display page.

The service definition’s check_com-
mand parameter specifies how to call 

01  #!/usr/bin/perl

02  use strict;

03  use LWP::Simple;

04  use Log::Log4perl qw(:easy);

05  use Nagios::Clientstatus;

06

 07  my $version = "0.01";

08  my $ncli    =

09    Nagios::Clientstatus->new(

10      help_subref => sub {

11        print "usage: $0 ",

12              "url\n";

13      },

14      version => $version,

15      mandatory_args =>

16                      ["url"],

17    );

18

 19  my $url =

20    $ncli->get_given_arg(

21                       "url");

22

 23  my $data = get $url;

24

 25  if (! $data) {

26   print

27     "Failed to get $url\n";

28   exit $ncli->exitvalue(

29    "unknown");

30  }

31

 32  my %values = split ' ',

33                     $data;

34

 35  my $status =

36    $values{idle} < 50

37    ? "critical"

38    : $values{idle} < 70

39    ? "warning"

40    : $values{iowait} > 20

41    ? "critical"

42    : $values{iowait} > 10

43    ? "warning"

44    : "ok";

45

 46  print "IOSTAT ", uc($status),

47    " - $data\n";

48

 49  exit $ncli->exitvalue(

50                      $status);

Listing 2: check_iostat

Figure 2: Nagios gives you a graph to indicate how often it failed to reach a system.

Perl: Nagios PluginsPROGRAMMING

72 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

01  #!/usr/bin/perl -w

02  use strict;

03  use Sysadm::Install qw(:all);

04  use CGI qw(:all);

05  use Regexp::Common;

06

 07  my ($stdout, $stderr, $rc) =

08    tap "iostat", 1, 2;

09

 10  $stdout =~

11    /avg-cpu.*?avg-cpu/gs;

12

 13  print header();

14

 15  for my $key (

16   qw(user nice sys

17   iowait idle)

18    ) {

19   if ($stdout =~

20    /\G.*?($RE{num}{real})/gs) {

21    printf "%s %s ", $key, $1;

22   }

23  }

Listing 1: iostat.cgi



the new check_iostat plugin. 
However, the call is not made 
directly in the service defini-
tion; instead it uses a command 
configured earlier by define 
command to specify the com-
mand line to run. The check_
command line can take op-
tional arguments, which it then 
passes on to the command defi-
nition. Separated by an excla-
mation mark, the URL on the 

check_command line gets passed on 
to the iostat command definition and 
replaces the $ARG1$ placeholder.

The value of 24x7 for the check_period 
and notification_period requires settings  
to define the admin’s email address 
and availability. You can pick up a sam-
ple file titled eznagios.cfg at [1], and 
add a cfg_file=/usr/local/nagios/etc/
eznagios.cfg line to the configuration file, 
nagios.cfg. At the same time, eznagios.
cfg defines Nagios tests that tell you how 
much disk space is occupied and if your 
service provider’s router and DNS server 
are working.

Hot or Not?
check_temperature is another neat exam-
ple of a home grown Nagios plugin. The 

Figure 3: iostat showing how long the CPU was idle 

and how often it had to wait for the hard disk.

Figure 4: The Nagios configuration for the 

new Iostat plugin.

01  #!/usr/bin/perl -w

02  use strict;

03  use RRDTool::OO;

04  use Getopt::Std;

05  use Pod::Usage;

06  use Nagios::Clientstatus;

07

 08  my $N = "TEMPERATURE";

09

 10  my $nc =

11  Nagios::Clientstatus->new(

12   help_subref =>

13     sub { pod2usage() },

14   mandatory_args => [

15    qw( crit warn dsname)

16   ],

17  );

18

 19  my $rrd =

20    RRDTool::OO->new(file =>

21     "/tmp/temperature.rrd");

22

 23  my $dsnames =

24    $rrd->meta_data("dsnames");

25

 26  $rrd->fetch_start(

27   start => time() - 6 * 60,

28   end   => time()

29  );

30

 31  my $temp;

32

 33  if (my ($time, @values) =

34   $rrd->fetch_next())

35  {

36   for (

37    my $i = 0 ;

38    $i < @$dsnames ;

39    $i++

40     )

41   {

42    if (

43     $dsnames->[$i] eq

44     $nc->get_given_arg(

45      "dsname")

46      )

47    {

48     $temp = $values[$i];

49     last;

50    }

51   }

52  }

53

 54  my $status = "ok";

55

 56  if (!defined $temp) {

57   $status = "unknown";

58  } elsif ($temp >=

59   $nc->get_given_arg("crit"))

60  {

61   $status = "critical";

62  } elsif ($temp >=

63   $nc->get_given_arg("warn"))

64  {

65   $status = "warning";

66  }

67

 68  printf "$N %s - %s: %s\n",

69    uc($status),

70    $nc->get_given_arg(

71   "dsname"),

72    defined $temp

73    ? sprintf("%.1f", $temp)

74    : "NODATA";

75

 76  exit $nc->exitvalue($status);

Listing 3: check_temperature

Create a user and a group for Nagios:

adduser nagios

cd nagios-2.0

./configure

make all

Install the binary executables, CGI 
scripts, and HTML pages, create the 
start script in /etc/rc.d/init.d, and then 
create a sample configuration:

make install

make install-init

make install-config

Installing Nagios

PROGRAMMINGPerl: Nagios Plugins

73ISSUE 67 JUNE 2006W W W. L I N U X- M A G A Z I N E . C O M



script (Listing 3) contacts the round-
robin database for the temperature gage 
introduced in [3], and alerts you if most 
recent external or internal temperature 
exceeds specific thresholds. In typical 
Nagios plugin style, it accepts command 
line parameters for threshold values. 
Calling check_temperature -warn=30 
-crit=35 -dsname=Inside triggers a 
warning if the internal temperature 
climbs above 30 degrees Celsius. The 
critical threshold is 35 degrees. Figure 5 
shows the various exit values and plugin 
output for different parameter settings.

In a similar style to the Iostat plugin 
we looked at earlier, the service entry 

check_command 
check_temper 
ature!25!30!Inside 
passes the parame-
ters 25, 30, and 
“Inside” to the 
script. The corre-
sponding com-
mand entry looks 
like this:

define command {
command_name check_temperature
command_line U
$USER1$/check_temperature U
-warn=$ARG1$ -crit=$ARG2$ U
-dsname=$ARG3$
}

The central section of the colorful table 
in Figure 1 shows that both temperature 
values are quite normal: 18.8 degrees 
Celsius (internal) and 15.9 (external). At 
least my apartment’s not burning!

Installation
A tarball of the Nagios 2.0 distribution is 
available on the project homepage [4]. 
After unpacking, follow the steps in the 
“Installing Nagios” box for a working 
Nagios server. Another tarball [2] con-
tains the standard plugins for Nagios-
2.0; unpack the tarball in /usr/local/
nagios/libexec.

The biggest obstacle to running Nag-
ios is the configuration. After installing 
the tool, admins are expected to create 
no less than six (!) different configura-
tion files. Fortunately, the distribution 
gives you a collection of sample files that 
you can edit. To do this, just rename the 
.cfg-sample files below /usr/local/nagios/
etc to .cfg.

A Nagios installation should never be 
publicly accessible via the Internet. You 

Figure 5: Output and exit values from the temperature plugin with 

various command line parameters.

Figure 6: Web server configuration settings 

for Nagios.

01  # cgi.cfg:

02  default_user_name=guest

03  

04  authorized_for_system_information=nagiosadmin,guest

05  authorized_for_configuration_information=nagiosadmin,guest

06  authorized_for_all_services=nagiosadmin,guest

07  authorized_for_all_hosts=nagiosadmin,guest

08  authorized_for_all_service_commands=nagiosadmin,guest

09  authorized_for_all_host_commands=nagiosadmin,guest

Listing 4: Guest Access

[1]  Listings for this article:  
http:// www. linux-magazine. com/ 
Magazine/ Downloads/ 67/ Perl

[2]  Standard plugins for Nagios-2.0: 
http:// prdownloads. sourceforge. net/ 
nagiosplug/ nagios-plugins-1. 4. 2. tar. gz

[3]  Michael Schilli, “How Cool is Perl?”, 
Linux Magazine April, 2006, pg. 58

[4]  Nagios: http:// www. nagios. org

INFO

Michael Schilli works 
as a Software Devel-
oper at Yahoo!, 
Sunnyvale, Califor-
nia. He wrote “Perl 
Power” for Addison-
Wesley and can be 
contacted at mschilli@perlmeister. 
com. His homepage is at  
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

might like to use the settings in Figure 6 
when setting up your Nagios web server. 
After launching the Nagios daemon by 
entering /etc/rc.d/init.d/nagios restart 
(as root), and sending a HUP signal to 
the web server, authenticated users can 
then access the measured data and a se-
ries of report formats at http:// localhost/ 
nagios (Figure 1).

If the Nagios page resides behind a 
firewall, and if you are sure that it is ac-
cessible to trusted users only, you can 
leave out authentication and comment 
out the Require valid-user lines. In the 
Nagios configuration file, cgi.cfg, the 
entries in Listing 4 would grant a non-
authenticated guest access to the full 
set of data and service commands.

A Good Night’s Sleep
After making all these changes to the 
configuration files, it might be a good 
idea to check if the configuration is 
error-free before attempting to restart 
the daemon. To check the syntax:

cd /usr/local/nagios
bin/nagios -v etc/nagios.cfg

A well thought out monitoring strategy, 
performed reliably by Nagios, guaran-
tees admins a good night’s sleep – un-
less an alert is triggered, of course. But 
being awakened by Nagios ringing your 
pager is definitely preferable to being 
thrown out of bed when an irate user 
calls in the middle of the night.  ■

Perl: Nagios PluginsPROGRAMMING

74 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M


