
70

Most commercial web servers are
devoted to the purpose of serv-
ing up dynamic, script-gener-

ated content in a reliable way. The very
nature of the Internet means that
unkown visitors from anywhere in the
world may pay a visit to the site. Unfor-
tunately, this all-important interaction
between visitors and the web application

opens up an attack vector. A skillful
attacker could use a vulnerability to gain
unauthorized access to the web server,
and, once inside, the intruder could em-
ploy adidtional tools and tricks to do
things that developers or webmasters
never intended. The potential for dam-
age is enormous, ranging from exposed
contents of confidential files to a com-
plete root compromise.

Cleanly programmed web applica-
tions provide one meaning-

ful approach to pre-
venting this kind of

abuse, but the
path is

fraught with
difficulty.
Even the
most experi-

enced pro-
grammers are

caught out from
time to time, as

vulnerabilities in
established web ap-

plications just go to
show.

Apache’s ModSecurity
module [1] provides

validation and en-
hanced protection

(Figure 1). The
module is

basically

a web application firewall available both
as an Apache module and as a stand-
alone application (GPL with option-
al commercial support). The module val-
idates incoming requests before passing
them to the appropriate scripts based on
the rules specified in the rule set. Just
like the pattern files used by virus scan-
ners, the rules comprise the signatures
of typical attack techniques.

If a request matches one of the signa-
tures, the mechanisms specified by ac-
tion rules are enforced. This can include
blocking the request, or forwarding the
request to another web page. The mod-
ule provides effective protection against
attacks such as OS Command Injection,
XSS/ Cross-Site Scripting, and SQL Injec-
tion.

Danger from Outside
The main danger for web servers, and
thus the administrator’s main concern, is
OS command injection attacks that exe-
cute system commands in the web serv-
er’s context. In January 2005, for exam-
ple, security experts discovered that the
Awstats web statistics tool inadvertently
allowed users to run arbitrary com-
mands. The awstats.pl?configdir=|echo;
echo;ls%20-la%20%2F;id;echo;echo
string runs the ls -la command on the
server with the permissions of Apache.

Giving attackers the ability to read
confidential information stored on the
web server can be similarly fatal. The
exploit that targeted the popular Mambo
CMS, which was disclosed in June 2005,
passes in SQL statements in the URL,
thus causing the web application to
serve up a list of all user password
hashes [7]. An attacker could then use
the list to crack user passwords, possibly
using Rainbow tables (pre-calculated
hash tables). The following URL reveals
the password entries:

http://server/mamboU
/index.php?option=U

The Apache ModSecurity module provides extra protection for your

web server. We'll show you why this optional application firewall is

quickly becoming a favorite of webmasters and security experts.

BY HANNES KASPARICK

Better protection with Apache’s ModSecurity module

WATCHDOG

w
w

w
.sxc.h

u

ID Use
0-99,999 #Local – for your own rules
100,000-199,999 #Reserved for ModSecu-

rity
200,000-299,999 #Reserved for rules pub-

lished on www.ModSecu-
rity.org

300,000-; Not assigned

Table 1: Rule Identifiers

Apache ModSecuritySYSADMIN

70 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

71

com_content&task=vote&id=U
%d&Itemid=%d&cid=1&user_rating=U
1,rating_count=(SELECT/**/ifU
((ascii(substring((SELECT/**U
/password/**/FROM/**/mos_usersU
/**/WHERE/**/id=%d),%d,1)))%s,U
1145711457,0))[...]

The SQL statement embedded in this
long string is: SELECT password FROM
mos_user WHERE id=User-ID. The Mod-
Security rule SecFilterSelective ARGS
"select.+from" catches this attack by de-
tecting the strings select and from as at-
tack characteristics, and the attack fails
(Figure 2). A would-be attacker simply
gets to see the Apache 403 message
Forbidden: You don't have permission to
access.

Cross-site scripting attacks pose a
greater threat to normal Internet users.
Cross-site scripting involves the attacker
attempting to run malevolent scripts on
the victim’s machine to access the vic-
tim’s cookies, for example. In this light,
it makes sense to filter <script> com-
mands from GET and POST requests. As
development of the ModSecurity module
is progressing rapidly, administrators
who plan to use ModSecurity are well
advised to check out the homepage be-
longing to ModSecurity’s author [1].
This is the place to go for updates on the
ModSecurity Rule Sets project [2], for
example.

Ready-to-run binary packages for
ModSecurity are available for most dis-
tributions. Users with Debian can give
the aptitude install libapache2-mod-secu-
rity command to install the package on
their disks; if you have FreeBSD, pkg_
add -r mod_security will do the trick.
After completing the install, enter
a2enmod mod-security on Debian to load
the module; FreeBSD does this automati-
cally. This article is based on ModSecu-
rity 1.9.2, although the popular 1.8.7

version has most of the features I refer
to in this article.

First Run Out
The [Fri Feb 24 11:55:12 2006] [notice]
mod_security/1.9.2 configured entry in
my Apache error.log tells me that the
module has installed successfully. To test
whether the module is working, all I
need is a simple rule set (Listing 1). The
first line enables the filter engine; the
second defines actions, and the third
checks content for the strings that fol-
low, /bin/sh in this case. To keep things
readable, it makes sense to store rule
sets in separate files and use include
path to file to bind them to your
apache2.conf.

The extended parameters in the Sec
Filter directive are new in version 1.9
and not supported by version 1.8. If you

have the previous version, you will also
need to replace SecFilterSignatureAction
with SecFilterDefaultAction.

Calling the URL http://Hostname/
index.php?a=/bin/sh in a web browser
checks the test rule. If the rule works,
the module will block access and display
an Internal Server Error message. The
error.log should contain the following:

[Fri Feb 24 14:25:12 2006] U
[error] [client 192.168.0.1] U
mod_security: Access U
denied with code 500.
Pattern match "/bin/sh" at U
REQUEST_URI [id "1001"] U
[rev "2"] [msg "/bin/sh attackU
attempt"] [severity "2"] U
[hostname "192.168.0.20"] U
[uri"/modsec/index.php?a=U
/bin/sh"]

01 #SecFilterEngine On

02 #SecFilterSignatureAction
log,deny,status:500

03 #SecFilter /bin/sh "id:1001,re
v:2,severity:2,msg:'/bin/sh
attack attempt'"

04 ## Regel für die Version 1.8:

05 ## SecFilter /bin/sh

Listing 1: Test rules

01 ## Enable ModSecurity

02 #SecFilterEngine On

03 ## Log faulty requests and
deny access

04 #SecFilterDefaultAction
"deny,log,status:403"

05 ## Log errors only

06 ## SecFilterDefaultAction
"pass,log"

07 #

08 ## Check POST data

09 #SecFilterScanPOST On

10 #

11 ## Check URL encoding

12 #SecFilterCheckURLEncoding On

13 #

14 ## Check Unicode encoding

15 #SecFilterCheckUnicodeEncoding
On

16 #

17 ## Accept only Ascii
characters 1 through 255

18 #SecFilterForceByteRange 1 255

19 #

20 ## Reduce server signature to
a minimum

21 #SecServerSignature "Apache"

22 #

23 ## Log relevant data only

24 #SecAuditEngine RelevantOnly

25 #SecAuditLog /var/log/apache2/
audit_log

26 #

27 ## Do not accept GET or HEAD
requests in the body

28 #SecFilterSelective REQUEST_
METHOD "^(GET|HEAD)$" chain

29 #SecFilterSelective HTTP_
Content-Length "!^$"

30 #

31 ## Content length must be sent
with each POST request

32 #SecFilterSelective REQUEST_
METHOD "^POST$" chain

33 #SecFilterSelective HTTP_
Content-Length "^$"

34 #

35 ## Discard unknown transfer
encoding, with the exception
of GET,

36 ## as this can cause problems
with some clients

37 #SecFilterSelective REQUEST_
METHOD "!^(GET|HEAD)$" chain

38 #SecFilterSelective HTTP_
Content-Type \

39 #"!(^application/x-www-form-

urlencoded$|^multipart/
form-data;)"

40 #SecFilterSelective HTTP_
Transfer-Encoding "!^$"

Listing 2: Basic Configuration

SYSADMINApache ModSecurity

71ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

To make it easier for the system adminis-
trator to use scripts to evaluate the
logfiles later on, each rule should have
a unique ID: Table 1 gives you the
reserved namespaces.

Coordinated Logging
The simplest form of logging merely
writes entries to the Apache web serv-
er’s error.log, although this option of
writing to the error log makes analysis
more difficult later.

As an alternative to the error log ap-
proach, you might like to consider the
more extensive audit logging option
shown in Figure 3. The Audit Log option
was introduced with ModSecurity ver-
sion 1.9. Among other things, the New
Audit Log Type logging option supports
logging of multiple events in separate
logfiles, although it does necessitate
enabling the Apache mod_unique_id
module.

In addition to this, version 1.9 and
newer support Guardian logging, that is,
these versions can pass log data to HTTP
Guardian [3] which in turn controls IP-
tables and pf firewalls, as well as the
Snortsam [4] IDS controller. By default,
HTTP Guardian blocks clients that send
more than 120 requests per minute or
more than 360 request in five minutes.
The program is still at the development
stage, but it works well and is well docu-
mented.

Basic Configuration
I will be using the basic configuration
from Listing 2 as a starting point for
some customization. Something similar
to this listing is also available from the

official project homepage. If you intend
to test the rule set on a production sys-
tem, it makes sense to just log potential
infringements during the test phase to
avoid blocking legitimate requests.
You can use a SecFilterDefaultAction
entry to do this, setting the parameters
to pass,log.

Instead of returning a 403 error mes-
sage when a rule is broken, ModSecurity
will also let you point the offending
request to any address or website using
an entry such as SecFilterDefaultAction
"deny,log,redirect:http://targetpage.
com". Filters help you define the criteria
that ModSecurity applies to HTTP
requests.

Filters always follow the pattern of
SecFilter SearchCriterion, and as of ver-
sion 1.9, the module has a few addi-
tional log parameters. ModSecurity dis-
tinguishes between three filter methods:
simple (SecFilter wget), selective (Sec
FilterSelective ARGS "union.+select")
and output (SecFilterSelective OUTPUT
"Fatal error:" deny,status:500).

A simple filter will always investigate
the complete HTTP request, whereas a
selective filter just investigates specific
parts of the request.

Output filters scan the content served
up by the web server, thus preventing it
from being displayed if needed. An ex-
clamation mark (!) will invert a filter
rule. For example, SecFilter !html applies

to any request that does not contain the
html string.

Filters
The simplest form of a filter policy is Sec-
Filter SearchPattern. The SecFilter Search-
Pattern filter policy tells ModSecurity to
search all GET and POST requests for
the pattern and trigger of the actions set
by the default policy in case of a positive
oucome.

Search keys can be simple expressions
or regexes. Filter rules are not applied di-
rectly to the request but to a normalized
copy. In other words, special (Unicode)
encoded characters (see “The Dangers of
Unicode”) are decoded first, and any un-
necessary / escaping is resolved. Null
byte attacks targeted at vulnerabilities
in server applications programmed in C
or C++ are fended off by the SecFilter
hidden filter.

The search patterns we have looked at
thus far just check the whole HTTP re-
quest. This configuration could mean a
bigger performance hit than you can ac-
cept. A SecFilterSelective Location Search-
Pattern Action entry lets you filter spe-
cific items. The location can be any CGI
variable. The online documentation
gives you the possible values and ex-
plains how to use them.

As an example of how to use Sec
FilterSelective, the following statement
finds all access attempts that do not orig-
inate within the 192.168.0.0/ ?24 net-
work: SecFilterSelective "REMOTE_
ADDR|REMOTE_HOST" !192.168.0.

In combination with Apache 2, Mod-
Security can filter the output from web-
sites. If an attacker succeeds in injecting
malicious SQL code that would output
the user_password from a database, Sec
FilterSelective OUTPUT "user_password"
deny,status:500 would block the display.
However, you will need to enable output
filtering using SecFilterScanOutput On
in order for this to happen.

Output filtering is disabled by default,
and there is a good reason for this de-
sign: the resource overhead associated
with using output filtering is consider-
able, as ModSecurity checks any content
served up by the Apache server. Also,
output filtering leads to the additional
risk of inadvertently filtering legitimate
content.

If you need to protect multiple virtual
hosts that perform different tasks, the

Figure 1: ModSecurity sits in front of the web

server and the web applications, protecting

both against attacks.

The Unicode standard provides a uni-
fied character set for international char-
acters. The legacy ASCII character set
uses only 7 or 8 bits to encode each
character, thus restricting the number of
characters to 128 or 256 respectively,
and some of these characters are used
for control purposes. Depending on the
version, Unicode will use up to 32 bits (4
bytes) to encode each character. This
means that Unicode can display runes
and hieroglyphics.

On the downside, the technique of re-
writing common exploits in Unicode has
helped attackers bypass Intrusion Detec-
tion Systems (IDS) in the past. For ex-
ample, the / character is represented as
/ in Unicode, and this kind of obfus-
cation might just keep the IDS at bay.
ModSecurity decrypts Unicode strings
by setting SecFilterCheckUnicodeEn-
coding On, giving filters downstream
the ability to detect possible exploits.

The Dangers of Unicode

Apache ModSecuritySYSADMIN

72 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

fact that ModSecurity supports rule in-
heritance via directories can be useful.
Directory rules have precedence over
global rules:

<Location /subcontext/>
 SecFilterRemove 1001
</Location>

This example simply disables rule ID
1001 while keeping the others. The fol-
lowing example does exactly the oppo-
site – it disables all higher-level rules
except for 1002 and 1003:

<Location /subcontext/>
 SecFilterInheritance Off
 SecFilterImport 1002 1003
</Location>

To make it easier to create rule sets, the
Modescurity Rule Sets project [2] and
the Gotroot [6] website offer pre-config-
ured ModSecurity rule sets as down-
loads. The Gotroot rules support the new
features in ModSecurity 1.9, which
makes them incompatible with earlier
versions.

Additional Features
ModSecurity has other security options
besides simple filtering mechanisms.
The SecUploadApproveScript /path/to/
script.sh function lets you check file up-
loads for viruses by starting a script that
triggers the virus scanner. The ModSecu-
rity online documentation has a sample
script. The module also sets up a chroot
jail via the SecChrootDir /var/www/
statement, thus preventing CGI scripts or
binaries outside of the jail.

Performance
Depending on the scale of your rule set,
ModSecurity can seriously affect your
web server’s responsiveness. A test

using ab indicates
the performance
hit. The bench-
mark is part of the
Apache package.
We launched the
tool with the fol-
lowing parameters: time ab -n 500 -c 30
http://server/phbBB2/index.php on a
(not Centrino) Pentium 4 (1.8 GHz)
CPU mobile system and measured a time
of about 55 seconds for the benchmark
on an Apache 2.0.55-4 without Mod-
Security.

Enabling ModSecurity with the basic
configuration shown in Listing 2 slows
the Apache server down by about two
percent, but after enabling the modsecu-
rity-general rule set, as provided by the
ModSecurity Rules project [6], the web
server took about 15 to 20 percent longer
to serve up the requested pages.

Administrators with heavily used web
servers will need to keep the rule set as
lean as possible to avoid major perfor-
mance hits. Besides the number of rules,
the complexity of the rules you use is an
important factor. If you have filters with
regular expressions, your rule set will
consume far more CPU cycles than rules
with simple comparative operators. As a
general rule: the more precisely you cus-
tomize your rule set to reflect your filter-
ing needs, the less load it will generate.

As Apache 1 does not have an PCRE
regexp engine, in contrast to Apache 2,
the load on Apache version 1 is slightly
higher. If a web server is exposed to a
massive attack, a nicely tuned ModSecu-
rity rule set can even improve your web
server’s performance, as the requests
will not actually get through to your
scripts.

As with any other rule-based security
application, the potential security gain
depends to a great extent on the rule set

you use. In other words, attacks that
your rule set does not explicitly cover
will make it through to the server.

Conclusions
As an additional barrier to attacks on
web applications, ModSecurity gives you
extensive protection mechanisms. How
effective these mechanisms are mainly
depends on your rule set configuration,
as is the case with all rule-based protec-
tion tools. Assuming a best-possible
setup, the module can fend off most
attacks on web servers and the web
applications they host.

A rough and ready ModSecurity con-
figuration could leave security holes and
also prevent the Apache server from de-
livering legitimate content. When you
are deploying ModSecurity, consider
every filter rule carefully before you
apply it. ■

Figure 3: The ModSecurity audit log records details of the approach

and circumstances surrounding the attack, thus giving the admin

useful data concerning the day’s events.

[1] ModSecurity:
http:// www. ModSecurity. org

[2] ModSecurity rule sets: http:// www.
ModSecurity. org/ projects/ rules/

[3] Apache Httpd tools:
http:// www. apachesecurity. net/ tools/

[4] Snortsam: http:// www. snortsam. net

[5] Spread toolkit: http:// www. spread. org

[6] ModSecurity rules:
http:// www. gotroot. com/ tiki-index.
php?page=mod_security+rules

[7] Mambo, SQL exploit:
http:// www. milw0rm. com/ exploits/
1061

INFO

Figure 2: In our example, the Apache ModSecurity module success-

fully fends off an SQL Injection attack, recording the attempt in the

web server’s error.log.

SYSADMINApache ModSecurity

73ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

