
68

Rodrigo Barreto de Oliveira was
frustrated; he couldn’t find a
programming language that was

suitable for his next project. Python
didn’t have the kind of static type check-
ing he needed, and he would have pre-
ferred better .NET integration. C# was
well integrated with .NET, but it required
too much typing. These disappointments
led Rodrigo to develop his own scripting
language. His new language would be
Python-based, and it would rely on the
Common Language Infrastructure (or
CLI) and the Dotnet framework. He
spiced the results with a couple of C#
and Ruby design principles and finally
came up with the object-oriented Boo
[1] language, which is available for
Linux thanks to the Mono environment.

Saying Hello
Because the ubiquitous “Hello World”
with its print("Hello World") line is al-

most too trivial, Listing 1 gives you a
GTK# variant on the theme.

Boo doesn’t simply enclose contiguous
blocks of code in curly brackets, but
uses indenting, just like Python. In fact,
you aren’t even allowed to type end to
finish a block. Boo does away with semi-
colons at the end of every line, and you
should only use them to resolve ambigu-
ity. On the other hand, Boo does support
both Python comments introduced by a
pound sign, #, and typical C and C++
variants with /* and //.

Variables
In contrast to Python, Boo uses static
typing; that is, you are required to state
a variable’s type before using the vari-
able for the first time. One advantage of
this approach is that the compiler will
detect incorrect assignments at build
time and complain about them. To avoid
the need for programmers to juggle with

data types, the clever Boo compiler auto-
matically derives the correct type in a
process known as type inference:

a as int // a is an integer
a=3

Boo is a scripting language tailor-made for Mono and .NET. This haunting mixture of Python and C# may be

just what you need to get started with the .NET framework. BY TIM SCHÜRMANN

Exploring the Boo scripting language

GHOSTSTORY

w
w

w
.p

h
oto

ca
se.co

m

01 import Gtk

02

03 Application.Init()

04 window = Window("Hello World",
DefaultWidth: 300,
DefaultHeight: 200)

05

06 window.DeleteEvent += def():

07 Application.Quit ()

08

09 window.ShowAll()

10 Application.Run()

Listing 1: Hello GTK#

Dotnet Scripting with BooPROGRAMMING

68 ISSUE 73 DECEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

69

b=a
print b

It is quite clear that b must be a number.
In fact, the first line in this example is re-
dundant, as the compiler has all the in-
formation it needs from the 3. Program-
mers only need to declare variables ex-
plicitly where inference will not work.
Lists, arrays, and hash tables are all easy
to handle. To fill a list, a, with the num-
bers 1 through 5, you either implicitly
create a list object:

a = List(range(1,5))

Or use the shorthand notation:

a= [1,2,3,4, 'five']
print(a[:3])

range() is an internal function that sup-
plies values from a given range. As the
example demonstrates, you can even use
mixed types in a list. In Boo-speak, the
shorthand in the print command is re-
ferred to as a slicing operation; in this
case, it returns the first three values from
a. As an additional goody, Boo supports

regular expressions, including Perl’s
Match operator (=~):

exampletext = "This is a test"
if exampletext =~ @/te.t/:
 print("contained")

This example searches exampletext for a
string of test, where the s between the e
and the t could be any other letter. The
regular expression is escaped in @/.../.

Functions
Python fans should feel at home with
function definitions:

def Hello(name as string):
 return "Your name: ${name}"

print Hello("Joe")

Boo handles functions as first class ob-
jects, a concept that originated with
functional programming languages. The
functions support anything the program-
ming language supports, so you can
drop them into variables or pass them in
to other functions as arguments. And, of
course, you can return them as results:

def function1(item as int):
 return item // do nothing
def function2():
 return function1

Closed Today
Boo will even let you define a function
within another function:

def outer():
 inner = def():
 print("inner has U
 been called")
 inner()

outer()

This technique is just a short step away
from closures. Again, Boo lifts this con-
cept from functional programming. A clo-
sure, block, or function terminator is a
piece of code or a function stem that local
variables in the enclosing function can
see and use.

Boo supports two different syntactical
forms: block-based syntax, as in the ex-
ample we have just seen, or brace-based
syntax, as shown in Listing 2.

In this case, the closures are sur-
rounded by braces, and their stems use
the a variable from the enclosing func-
tion. You can even call closures if the en-
vironment, and thus the variable, have
actually ceased to exist.

Spiced
Now, if Boo supports the concept of re-
turning functions, this means that brain
taxing expressions like the following are
possible:

power = { x as int | return U
{ y as int | return x ** y }} U
// ** represents a power

01 def function():

02 a = 0 # new variable

03 inc = { a+=1 }

04 show = {return a}

05 return inc, show

06

07 i,s=function()

08 print(s())

09 i()

10 print(s())

Listing 2: Block Syntax

Figure 1: The Boo project homepage provides code snippets and a useful introduction to the

Boo language.

PROGRAMMINGDotnet Scripting with Boo

69ISSUE 73 DECEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

power expects a closure function which,
in turn, returns a new function. How-
ever, the function this churns out also
expects some input. You could actually
call this duo like this:

power(5)(2)

As you can see, the 5 is first passed into
the power function which, in turn, re-
turns a function (the function { y as int |
return 5 ** y } to be precise). The 2 is
then passed in to the new function,
which returns the result. The bottom
line is that, instead of having a single
function with two arguments, we now
have two functions with one argument
apiece. The software’s architects refer
to this as currying.

Generators
Besides closures, Boo also supports gen-
erators: functions that produce a series
of results. However, they do not simply
generate and return a complete list. In-
stead, the next element in the list is not
calculated unless it is actually needed.
Boo refers to these functions as genera-
tor methods (Listing 3).

The MyGenerator generator method
runs until the next yield, then it outputs
the value of the variable it finds there
and stops. When the calling function
(List in our example) needs the next
value, the generator picks up exactly
where it left off. As the next value is
only generated if needed, this approach
needs less memory under ideal condi-
tions – after all, a single number will
occupy less space than a complete list.
This is particularly apparent in iteration
controls, such as in for loops. Besides
generator methods, Boo also has genera-
tor expressions, which work exactly like
their functional counterparts, but com-
prise a single for loop. This removes the
need for an explicit function definition,

providing useful support for compact
definitions of quantities such as “all un-
even numbers between 1 and 10 subse-
quently multiplied by 2”:

uneventimestwo = i*2 for i U
in range(10) if i%2
for x in uneventimestwo :
 print x

Again, Boo only produces the next num-
ber from the hat after testing for the ter-
minating condition in the second for loop.
Putting together a list of generator expres-
sions gives you a list generator, a fast way
of filling a list with selected objects:

uneventimestwolist = U
[i*2 for i in range(10) if i%2]

Classes
In contrast to C#, Boo can completely do
without classes if necessary. You can use
imperative programming or opt for func-

tions, like in C, however, Boo is com-
pletely object-oriented under the hood.
You can regard any function as an ob-
ject. Saying print("Hello World") is the
same as saying print.Invoke("Hello
World"). And replacing .Invoke with
.BeginInvoke, launches the function
stem in a thread of its own:

def Calculation():
 for x in range(10):
 longcalculation(x)

Calculation.BeginInvoke()

This will bring tears to many a C pro-
grammer’s eyes. Multithreading has
never been so easy.

Attributes and Fields
In an object oriented language, every ob-
ject has its own methods and attributes.
To access attributes, programmers typi-
cally need to provide a method to set
and get the attribute values. This fre-
quently recurring task can be a nuisance,
so Boo adopted the idea of properties
from C#. Boo distinguishes between
fields and properties, where fields are
legacy variables that implement the attri-
butes of an object. Properties are an in-
teresting syntactical alternative to set
and get methods (Listing 4).

Access to the Color is handled intui-
tively by a simple assignment. Behind
the scenes, this example actually calls
the get method and stores the passed
value in the _color field. All of this is
hidden from the object user. To save typ-
ing, Boo even has shorthand:

class Chair:
 [Property(Color)]
 _color as string

01 def MyGenerator():

02 i = 1

03 yield i

04 for x in range(10):

05 i += 2

06 yield i

07

08 print(List(MyGenerator()))

Listing 3: Generators

01 class Chair:

02 Color as string:

03 get:

04 return _color

05 set:

06 _color = value

07

08 _color as string

09

10 woodenchair = Chair()

11 woodenchair.Color = 'Brown'

Listing 4: Properties

You have three options for running Boo
scripts. Whichever approach you
choose, you will need to install the
Mono environment and unpack the Boo
package from [1] before you can start.
First of all, you can use the compiler,
booc.exe, to compile a script:

mono bin/booc.exe -out:U

hello.exe hello.boo

The binary built from the hello.boo
script can then be run by giving mono
hello.exe command. The -r option will
include any additional DLLs you need:

mono bin\booc.exe -r:U

gtk-sharp -out:hallogtk.exe U

hallogtk.boo

When you distribute programs like this,
you just have to include the Boo.Lang.
dll library from the bin directory with the
distribution package.

Besides the Boo compiler, the package
also includes the booi.exe interpreter,
which can run Boo scripts directly, as in
mono bin\booi.exe hallo.boo. In addi-
tion to this, there is booish.exe, an inter-
active shell that supports direct com-
mand input in a style similar to Python.

Finally, you can use the Boo API to run
Boo code. The Dotnet objects the API
provides will even let you run one Boo
script from within another (Listing 5).

Compilation

Dotnet Scripting with BooPROGRAMMING

70 ISSUE 73 DECEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

Boo automatically generates the required
get and set methods in the background.

Duck Typing
Boo lifted the concept of duck typing
from Ruby. Duck typing involves
disabling static type checking for a vari-
able, and thus gaining the power to as-
sign arbitrary objects to the variable:

d as duck // d can be anythingU
 from here on in
d = 5 // d is an integer U
from here...

d = "Hello" // ... and a U
string from here

So if it quacks like a duck, looks like a
duck, and walks like a duck, you can
treat it like a duck.

Extensible
Boo was designed as an extensible lan-
guage. For example, you can add custom
macros. Boo comes with a handful of
useful helpers, such as assert, which
checks a condition and throws an excep-
tion if the test is negative:

assert 1>5, U
"One is not bigger than 5"

Hiding behind the macro is a simple Dot-
net object that follows a specific signa-
ture, so Boo doesn’t care what language
the macro is written in. But there is more
to extensibility: the Boo compiler was
designed as a modular pipeline. If you
need to, you can latch into the build pro-
cess and perform actions of your own.

Conclusions
Boo provides the CLI with an easy-to-
learn scripting language that turns out
pleasingly quick binaries. This makes
Boo suitable for both prototype develop-
ment and Dotnet and Mono integration.
The syntactical proximity to Python also
makes life easy on programmers think-
ing of a change. Support for Dotnet 2.0 is
currently in progress. ■

01 import Boo.Lang.Compiler

02 import Boo.Lang.Compiler.IO

03 import Boo.Lang.Compiler.Pipelines

04

05 compiler = BooCompiler()

06 compiler.Parameters.Input.Add(StringInput("<script>",
"print('Hello!')"))

07 compiler.Parameters.Pipeline = Run()

08 compiler.Run()

Listing 5: Using the API to Run Boo Code

[1] Boo homepage:
http:// boo. codehaus. org

INFO

Advertisement

PROGRAMMINGDotnet Scripting with Boo

