
54

For a user at the command line,
discovering the differences be-
tween two text files is easy: a

simple command, such as diff Version_
1.txt Version_2.txt, is all it takes. On

closer inspection, however, it turns out
that diff needs a large amount of mem-
ory and some ingenious algorithms to
compare files.

This article investigates how diff
 manages to find changes and
matches in multiple megabyte
files without affecting a sys-
tem’s resources.

Editing Distance
Every string can be changed
into any other string by insert-
ing, deleting, or replacing indi-
vidual characters.

One possible method of con-
verting tier into tor would be to
perform the following changes:
tier -> ter -> tr -> tor. How-

ever, an alternative solution with fewer
intermediate steps would be: tier -> ter
-> tor.

The smallest number of steps required
for a change provides us with a metric
for evaluating the similarity of two
strings. This metric is referred to as the
Levenshtein or editing distance, and this
method is the basis for marking changes
in diff.

Diff finds the differences between two versions of a file. We’ll show you how diff finds changes and matches

in files without affecting a system's resources. BY ANDREAS ROMEYKE

Examining the algorithms of the diff utility

WHAT’S THE DIFF?

Diff AlgorithmsKNOW-HOW

54 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

u
rb

a
n

h
ea

rts, Foto
lia

Figure 1: The matrix view makes matches (zero values)

visible, even though the position of the characters has

changed between the two files.

0 11 15 2
5 6 10 3
2 9 13 0

t i e r
t
o
r

After graduating in telecommunica-
tions and information science, An-
dreas Romeyke now works as a soft-
ware developer for the Max Planck
Institut for Neuro and Cognition Sci-
ences in Leipzig, Germany. Andreas
co-founded the Linux Usergroup
Leipzig and the Society for the
 Application of Open Systems.

T
H

E
 A

U
T

H
O

R

55

In practical applications, the larger
part of the files will be unchanged for
most comparisons. Thus, the first step is
to exclude the identical passages. To dis-
cover the changes, even if they have
been shifted with respect to the original,
we need to organize the text in a matrix,
as shown in Figure 1.

The numbers in the table refer to the
differences between the byte values of
the individual characters. Thus, a zero
represents an unchanged character. The
longest match is referred to as the lon-
gest common subsequence or LCS.

The editing distance can be derived
from the length of the LCS by applying
the following formula d(X, Y) = n + m
– 2 * |LCS (X, Y)| with X = x_1 … x_n
and Y = y_1 … y_m

In a matrix of this kind, shifts are very
easy to detect: comparing otter and lotto
(Figure 2) the zeroes (the matches) are
located along a descending line parallel
to the main diagonal of the matrix (the
diagonal that runs from top left to bot-
tom right).

Swaps (teir to tier, Figure 3) are shown
as interruptions in the matrix with ze-
roes at 90 degrees to the main diagonal
running through their centers.

Palindromes (reversed character or-
ders) show up as a sequence of zero val-
ues that runs from top right to bottom
left (the adjacent diagonal) in the matrix
(Figure 4).

Runtime Optimization
The matrix size depends on the length of
the texts. If you have two 10 KB files, the
number of comparisons is surprisingly
high: 10000 * 10000 = 100000000, and
this means you need 100 MB of RAM
just to store the matrix. Searching for
matches requires some more memory.

A computational process that calcu-
lates values multiple times can be opti-
mized. Dynamic programming (see the
“Dynamic Programming” box) reduces
memory consumption and saves compu-
tation time.

Dynamic programming keeps the
number of comparisons low when com-

paring two versions of a text in
a matrix: instead of the bitwise
difference between two charac-
ters, the matrix shown in Figure
5 stores the number of matching
characters since the start of the
string. Listing 1 provides the
Perl code used to implement
this approach.

Using the values shown in
Figure 5, a backtracking algo-
rithm can quickly determine the
longest common subsequence
in a string:
1. Start with the maximum
 value. Select the largest entry

above and to the left, or to the left, or
above the current position.

2. If multiple entries with equally large
values exist, take the path above and
to the left.

KNOW-HOWDiff Algorithms

55ISSUE 76 MARCH 2007W W W. L I N U X- M A G A Z I N E . C O M

Figure 2: Matching passages are visible as zero diagonals running

parallel to the main diagonals in the matrix.

3 8 8 7 6
0 5 5 10 3
5 0 0 15 2

o t t e r
l
o
t

5 0 0 15 2
0 5 5 10 3

t
o

Figure 3: Swaps show up as interrupted zero diagonals

in the matrix. The characters that were swapped are

located on a line at 90 degrees to the diagonal.

0 11 15 2
15 4 0 17
11 0 4 13

t i e r
t
e

2 13 17 0
i
r

01 sub lcs {

02 my $refmatrix=shift;

03 my $refxlst=shift;

04 my $refylst=shift;

05 my $m=scalar @$refxlst-1;

06 my $n=scalar @$refylst-1;

07 foreach my $i (1 .. $m) {

08 foreach my $j (1 .. $n) {

09 if ($refxlst->[$i] eq
$refylst->[$j]) {

10
$refmatrix->[$i]->[$j] =
$refmatrix->[$i-1]->[$j-1]+1;

11 } elsif
($refmatrix->[$i-1]->[$j] >=
$refmatrix->[$i]->[$j-1]) {

12
$refmatrix->[$i]->[$j] =
$refmatrix->[$i-1]->[$j];

13 }

14 else {

15
$refmatrix->[$i]->[$j] =
$refmatrix->[$i]->[$j-1];

16 }

17 }

18 }

19 return $refmatrix;

20 }

Listing 1: Searching for the
LCS

Figure 4: Palindromes (reversed character orders) show up in the

matrix as diagonals that run from bottom left to top right.

6 17 11 13 0
7 4 2 0 13
5 6 0 2 11

l a g e r
r
e
g
11 0 6 4 17
0 11 5 7 6

a
l

3. Walking through the matrix; the LCS is
found if multiple entries with the same
maximum value occur.

Figure 6 shows the path that this algo-
rithm takes through the matrix. Listing 2
implements the matching algorithm in
Perl. To allow the script to terminate
gracefully, the string must contain a se-
quence of null values at the start, as
shown in the figure.

You don’t need to add much to the al-
gorithm discussed in the last section to
output the differences between two files
or strings just like diff. Whenever the
tracking path through the matrix
changes direction upward or to the left,
a character has been deleted or inserted
in the new version.

The script in Listing 3 detects these
changes. The while loop in Lines 43 and
47 makes sure the algorithm takes the
characters represented by zeroes in the
matrix into consideration.

Although dynamic programming
avoids multiple calculations, the devel-
opers behind the diff tool for Unix (later

known as the diff-utils, [1]) had to pull
another card out of their sleeves.

The diff tool was mainly designed for
use with source code. To be able to han-
dle typical file sizes with the memory
that computers had in the 1980s, diff

does not compare letter by letter, but line
by line.

To do so, the program first calculates a
hash for each line, before calculating the
differences between the hashes in a sec-
ond step.

The program does not need to com-
pare the lines letter by letter if the
hashes are identical. This approach
saves a great deal of memory.

In 1986, Eugene Myers developed a
fast algorithm that is the basis of the
popular diff-utils [6]. GUI-based alterna-
tives to the diff command line program,
such as Meld [7] or the KDE Kompare
[8] tool, are all based on the approach.
In fact, despite the fancy graphics, Kom-
pare actually relies on the legacy diff tool
under the hood.

More Applications
The technique that diff uses is not only
suitable for discovering differences in
the source code. Instead of discovering
differences, the diff algorithm can also
find matches, and thereby prove that
code has been reused. For larger scale
software projects, the occurrence of

Diff AlgorithmsKNOW-HOW

56 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 # run backtracking on
lcs-matrix

02 sub backtracking_lcs {

03 my $refmatrix=shift;

04 my $ref_xlst=shift;

05 my $ref_ylst=shift;

06 my @lcs;

07 my $x=scalar @$ref_xlst -1;

08 my $y=scalar @$ref_ylst -1;

09 while ($y>0 && $x>0) {

10 my $actual_
value=$refmatrix->[$x]->[$y];

11 my $actual_x=$x;

12 if (

13
($refmatrix->[$x-1]->[$y-1] >=
$refmatrix->[$x-1]->[$y]) &&

14
($refmatrix->[$x-1]->[$y-1] >=
$refmatrix->[$x]->[$y-1])

15) { # go left upper

16 $x--; $y--;

17 } elsif
($refmatrix->[$x-1]->[$y] >=
$refmatrix->[$x]->[$y-1]) { #
go left

18 $x--;

19 } else { # go upper

20 $y--;

21 }

22 # check if value is
changed, then push to @lcs

23 if ($actual_value >
$refmatrix->[$x]->[$y]) {

24 push @lcs, $actual_x;

25 }

26 }

27 @lcs=reverse @lcs; #
reverse because backtracking

28 return \@lcs;

29 }

30

 31 # print out lcs matrix

32 sub print_lcs {

33 my $ref_matrix=shift;

34 my $ref_xlst=shift;

35 my $ref_ylst=shift;

36 print "LCS: '";

37 foreach my $i (@{
backtracking_lcs($ref_matrix,
$ref_xlst,

$ref_ylst) }) {

38 print $ref_xlst->[$i];

39 }

40 print "'\n";

41 }

Listing 2: Backtracking

[1] GNU Diffutils Manual, 2002:
http:// www. gnu. org/ software/ diffutils/
manual/ diff. html

[2] Darren C. Atkinson and William G.
Griswold, “Effective pattern matching
of source code using abstract syntax
patterns”: Software – Practice and Ex-
perience, 36 (4), p. 413-447, 2006.

[3] K. Nandan Babu and Sanjeev Saxena,
“Parallel algorithms for the longest
common subsequence problem”,
January 20, 1999.

[4] J. W. Hunt and M. D. McIlroy “An al-
gorithm for differential file compari-
son”: Technical Report CSTR 41, Bell
Laboratories, Murray Hill, NJ, 1976.

[5] Moritz G. Maaß, “Matching statistics:
efficient computation and a new prac-
tical algorithm for the multiple com-
mon substring problem”: Software –
Practice and Experience, 36 (3),
p. 305-331, March 2006.

[6] E. W. Myers, “An o(ND) difference
algorithm and its variations”: Algo-
rithmica, 1 (2), p. 251-266, 1986; http://
citeseer. ist. psu. edu/ myers86ond. html

[7] Meld: http:// meld. sourceforge. net

[8] Kompare: http:// www. caffeinated. me.
uk/ kompare

INFO

Dynamic programming is an important
concept in computer science. and it is
also often the best approach for resolv-
ing optimization problems. In many
cases, it is easier to break a problem
down, resolve the individual subtasks,
and use the results in an additional
processing step.

Calculating powers is a simple example
that dates back to the days in which
computational resources were scarce: to
calculate the eighth power of a number,
you can break down the calculation
n*n*n*n * n*n*n*n into intermediate
steps of ((n*n) * (n*n)) * ((n*n) * (n*n)).
If you temporarily store the results of
(n*n) and ((n*n)*(n*n)), three multipli-
cations are required, rather than seven.

Dynamic Programming

many code duplicates is proof of suc-
cessful refactoring. A variant on the diff
theme is even able to compare notes
played with the notes a musician is
asked to play.

If the distance matrix (Figure 4) shows
the difference between the keypresses on
a computer keyboard (this referred to as
the typewrite distance). Instead of the
difference between the character codes,

it can be applied to incorrectly typed
words to guess what a person meant to
type. One interesting application for diff
is in biology, where it is used to se-
quence and catalog genes. ■

KNOW-HOWDiff Algorithms

57ISSUE 76 MARCH 2007W W W. L I N U X- M A G A Z I N E . C O M

01 # run backtracking on
lcs-matrix

02 sub backtracking_lcs {

03 my $refmatrix=shift;

04 my $ref_xlst=shift;

05 my $ref_ylst=shift;

06 my @lcs;

07 my $x=scalar @$ref_xlst -1;

08 my $y=scalar @$ref_ylst -1;

09 while ($y>0 && $x>0) {

10 my $actual_
value=$refmatrix->[$x]->[$y];

11 my $actual_x=$x;

12 my $actual_y=$y;

13 my $actual_direction;

14 if (

15
($refmatrix->[$x-1]->[$y-1] >=
$refmatrix->[$x-1]->[$y]) &&

16
($refmatrix->[$x-1]->[$y-1] >=
$refmatrix->[$x]->[$y-1])

17) { # go left upper

18 $x--; $y--;

19 $actual_
direction="ul";

20

 21 } elsif
($refmatrix->[$x-1]->[$y] >=
$refmatrix->[$x]->[$y-1]) { #
go left

22 $x--;

23 $actual_direction="l";

24 } else { # go upper

25 $y--;

26 $actual_direction="u";

27 }

28 # check if value is
changed, then push to @lcs

29 if ($actual_value >
$refmatrix->[$x]->[$y]) {

30 # push @lcs, $actual_
x;

31 push @lcs, "(".$ref_
xlst->[$actual_x].")";

32 } else {

33 if ($actual_direction
eq "u") {

34 push @lcs,
"+(".$ref_ylst->[$actual_
y].")";

35 } elsif ($actual_
direction eq "l") {

36 push @lcs,
"-(".$ref_xlst->[$actual_
x].")";

37 } else {

38 push @lcs,
"+(".$ref_ylst->[$actual_
y].")";

39 push @lcs,
"-(".$ref_xlst->[$actual_
x].")";

40 }

41 }

42 }

43 while ($y > 0) { # get last
stuff of ylst

44 push @lcs, "+(".$ref_
ylst->[$y].")";

45 $y--;

46 }

47 while ($x > 0) { # get last
stuff of xlst

48 push @lcs, "-(".$ref_
xlst->[$x].")";

49 $x--;

50 }

51 @lcs=reverse @lcs; #
reverse because backtracking

52 return \@lcs;

53 }

54

 55 # print out lcs matrix

56 sub print_diff {

57 my $ref_matrix=shift;

58 my $ref_xlst=shift;

59 my $ref_ylst=shift;

60 print "DIFF: '";

61 foreach my $i (@{
backtracking_lcs($ref_matrix,
$ref_xlst, $ref_ylst) }) {

62 print $i;

63 }

64 print "'\n";

65 }

Listing 3: Diff Algorithm

Figure 5: Instead of entering the differences between the character

values, it is more efficient to write the length of the subsequences on

initial parsing.

0 0 0 0 0
0 1 1 1 1
0 1 1 2 2

t i e r

t
e

0 1 1 2 2
0 1 1 2 3

e
r

Figure 6: To discover the longest subsequence, start at the maximum

value in the table and backtrack through the fields, using a simple

algorithm.

0 0 0 0 0
0 1 1 1 1
0 1 1 2 2

t i e r

t
e

0 1 1 2 2
0 1 1 2 3

e
r

