
29

Has your server been cracked? 
Are your processes running 
wild? If you suspect an intru-

sion, you’ll need accurate information 
on what’s happening with the system. 
Open file handles are a useful source 
for this information. lsof [1] scans the 
depths of the filesystem for these files 
and then returns comprehensive and 
 detailed output.

To be fully prepared for an attack, 
you’ll need an Intrusion Detection Sys-
tem (IDS) like Snort, Tripwire or Aide to 
check the filesystem and data streams 
for suspicious patterns. However, if you 
don’t have the time or resources for a 
full-blown intrusion response, Linux has 
a number of standard command line 
programs capable of discovering tell-tale 
traces on a system. The usual suspects 
for server diagnosis are ps, netstat, top, 
fuser, and other friendly helpers. 

lsof is a single tool that provides a 
summary of similar system information. 
You can use lsof as a single source for 

obtaining information that would other-
wise require a whole collection of admin 
utilities.

As the adage goes, “everything is a 
file” in Unix. Almost all activities on a 
Unix-like system bear some relation to 
an open file. Unix-style systems use reg-
ular files, special block files, executables, 
libraries, directo-
ries, internal data 
streams (Unix Do-
main Sockets), 
and network con-
nections. lsof is 
able to centrally 
collect and syn-
thesize all this 
 information into 
meaningful clues 
about the nature 
of an attack.

Like any utility, 
lsof is subject to 
manipulation 
once the attacker 

has gotten comfortable. If you are seri-
ous about using lsof for intrusion detec-
tion, leave out the make install step after 
compiling and manually move the bi-
nary to a write-protected medium such 
as a CD ROM. Of course, if a sophisti-
cated attacker has directly modified the 
kernel (through a kernel rootkit, for ex-

QUICK CHECK

Figure 1: The promising glsof tool gives GUI fans easy access to filter 

settings.

Track down and expose intruders with the versatile admin tool lsof. 

BY CASPAR CLEMENS MIERAU

Looking for intruders with lsof

COVER STORYlsof

29ISSUE 77 APRIL 2007W W W. L I N U X- M A G A Z I N E . C O M



ample) the output of lsof will be unreli-
able even if the tool itself is untouched. 
However, as you’ll learn in this article, 
many attackers try tricks that aren’t 
especially sophisticated and are easily 
exposed with a tool like lsof.

lsof is no substitute for a full-featured 
IDS, but if you are too late for that or if 
you aren’t interested in implementing 
or managing a more comprehensive 
system, you can still use lsof to look 
for footprints.

Investigations
Table 1 lists a number of examples for 
investigating a system. If you enable 
lsof’s security option, only root will re-
ceive detailed output for these com-
mands. In secure mode, lsof will only 
show users the details that directly affect 
them, however, even in insecure mode, 
lsof gives users without root privileges 
fewer details, as you need root privileges 
to access the details in /proc.

lsof uses a tabular format to output 
the information filtered as specified by 
the parameter list, including the follow-
ing columns by default:
• Process name: COMMAND
• Process ID: PID
• Name of system user account under 

which the process is running: USER
• File descriptor: FD
• File type: TYPE
• Device: DEVICE
• Size: SIZE
• Connection: NODE
• Full name: NAME

You can manipulate the output for pro-
cessing with other tools using lsof -F. 
Special formatting helps the downstream 
tools parse the individual fields (see the 
manpage section Output for other pro-
grams for details).

Flood of Information
Calling lsof without setting parameters 
returns too much information to provide 
a useful overview – the flood of informa-
tion would scare off many users. How-
ever, command line parameters can help 
lsof concentrate on the data you need. If 
you combine multiple parameters, lsof 
assumes a logical OR operation by de-
fault; however, you can specify -a for an 
AND operation (last line in Table 1).

Identifying processes that are prevent-
ing users from unmounting a storage 
medium is a typical task for lsof. Calling 
lsof with the -t directoryname option 
returns a list of numeric process IDs 
accessing the CD-ROM:

$ umount /dev/cdrom
umount: /cdrom: device is busy
$ kill -9 `lsof -t /dev/cdrom`
$ umount /dev/cdrom
$ eject

However, this method is as drastic as it 
is effective.

Expectations
The commands listed in Table 1 are fine 
for discovering important facts about a 
system before or after an attack. To de-
fend yourself against invaders, you need 
to be familiar with the normal status, 
and to be aware of where suspicious 
entries are likely to appear.

The following example uses a tradi-
tional LAMP system (Linux, Apache, 

Lsof supports a number of Unix deriva-
tives, and it is probably part of your basic 
Linux system, or at least it should reside 
in the standard repository. To install on 
Debian, for example, you just need to 
issue a apt-get install lsof command. 
The lean package has no dependencies, 
apart from the mandatory Libc 6.

This said, there are two reasons for 
avoiding the prebuilt binary: system 
compatibility and security. As lsof’s de-
veloper Vic Abel points out in the FAQ 
[2], you can only guarantee a full feature 
set and optimum stability, if you build 
the current lsof version on the target ma-
chine, since lsof digs deep into the sys-
tem architecture and kernel. It is always 
better to obtain tools you will be using 
for preventive or forensic analysis from 
a safe source and not to mix them with 
standard system tools to avoid the dan-
ger of manipulation by rootkits.

The lsof sources are easily compiled, 
so you might as well build a version that 
matches your system. The commands 
in Listing 1 grab the sources of the net-
work; use GnuPG to check the signature 
(note that the key in our example was 

obtained from an insecure source), con-
figure the source code, and compile it. 
During the configuration phase, you are 
prompted to make a few decisions. The 
HASSECURITY and HASNOSOCKSECU-
RITY options are important. If you would 
only like the root user to be able to use 
lsof to list open files and sockets for all 
users, you need to answer [y] and [n]. 
The inconsistent terminology does tend 
to be confusing.

On completing the build, ./lsof -v tells 
you the options it was compiled with. 
The Only root can list all files message 
means that normal users will be unable 
to misuse the program to list system-
critical information. (Restricting access 
to lsof is a rather cosmetic security solu-
tion, since much of the information avail-
able through lsof can also be obtained 
with tools such as ps and netstat, al-
though the process may not be quite as 
convenient. The prebuilt versions in vari-
ous distributions handle security differ-
ently. Debian grants non-administrative 
users unrestricted use of lsof, whereas 
Red Hat Enterprise applies restrictions.

Finding and Building lsof

Figure 2: The Jlsof filter dialog tells you the 

correct lsof parameters. Although this might 

confuse GUI-only users, it does make it eas-

ier for users to move to the command line.

01  wget ftp://lsof.itap.purdue.
edu/pub/tools/unix/lsof/lsof.
tar.bz2

02  tar xjf lsof.tar.bz2

03  cd lsof_4.77

04  wget ftp://lsof.itap.purdue.
edu/pub/Victor_A_Abell.gpg

05  gpg --import Victor_A_Abell.
gpg

06  gpg --verify lsof_4.77_src.
tar.sig lsof_4.77_src.tar

07  tar xf lsof_4.77_src.tar

08  cd lsof_4.77_src

09  ./Configure linux

10  make -s

11  ./lsof -v

Listing 1: Compiling lsof

lsofCOVER STORY

30 ISSUE 77 APRIL 2007 W W W. L I N U X- M A G A Z I N E . C O M



MySQL, PHP). The administrator notices 
an enormous increase in network load 
that doesn’t reflect the number of page 
hits. The administrator suspects that an 
attacker has injected a trojan that copies 
files over the wire, launches distributed 
network attacks or sends spam mail. In 
a LAMP environment, the PHP system 
interface is one of the major targets, as 
PHP suffers from a couple of design 
weaknesses [6], but poorly crafted 
scripts can just as easily give an attacker 
a foothold.

 If you are familiar with typical PHP 
attack patterns, you will probably al-
ready have guessed what kind of infor-
mation you need to look for with lsof.

The Apache web server runs under its 
own user account by default, www-data 
(Debian), apache, httpd, or if the worst 
comes to the worst, nobody (this ac-
count is normally reserved for NFS). 
Typically, additional processes will run 
as root to support privileged ports and to 

be able to open 
log files. In con-
trast to this, data 
communications 
are handled by 
unprivileged pro-
cesses. Thus, a 
web server offers 
a guessable con-
figuration of users, 
executable files, 
and open ports. 
For example, 
www-data runs  
/usr/sbin/apache2 
on Debian.

What’s Running Where?
In this context, we need a call to lsof -a 
-d txt -u www-data to list processes that 
execute the file /usr/sbin/apache2 as the 
www-data user account. The -a option 
gives us a logical AND, -d txt lists exe-
cuted files only, and -u www-data re-
stricts the output to just one user. Under 
normal circumstances, this will give you 
just the Apache processes.

If an attacker manages to manipulate 
PHP or your PHP scripts and execute 
system commands and programs on the 
server, these commands and processes 
will typically run under the same ac-
count as Apache – that is, unless the 
attacker has escalated his privileges and 
gained root access by exploiting other 
security holes. 

Finding processes that belong to the 
Apache user and that also access other 
binaries or open unexpected ports, 
should set off the alarms. lsof -p PID 

investigates the suspicious processes for 
details of network connections, libraries 
that have been loaded, open files, and 
many other things.

As malevolent hackers tend to use 
their own FTP, IRC, telnet, or SSH serv-
ers, initial analysis should include 
searching for open ports. The lsof -a -i -u 
www-data | grep LISTEN command lists 
all the IP sockets (-i), which sockets the 
Apache user has opened, (-u www-data), 
and which are listening for connections 
(this explains grep LISTEN). 

Everything apart from 80 (HTTP) and 
443 (HTTPS) is suspicious. Although a 
call to netstat will give you similar 
results, lsof can help you perform more 
detailed analysis without needing to 
switch to another tool.

The Real World
Apache and PHP exploits are fairly com-
mon. Listings 2a and 2b show two ex-
cerpts from the lsof logs on compro-
mised servers, and they are all I need to 
diagnose an attack. The output results 
from analyzing processes belonging to 
the www-data account. See Listing 3 for 
another abridged example.

In the first example, the attacker 
exploits an obsolete version of W-Agora 
(online forum software) and a directory 
without write protection (Listing 2a, 
Line 2: /home/user/public_html/
w-agora/). 

Command Explanation
lsof Without any parameters, the command gives you an overview.
lsof /bin/ bash Lists all processes that use bash.
lsof -p PID Lists the open files for the process with the specified process ID.
lsof +D /tmp Lists all open files in /tmp and its subdirectories without symbolic links.
lsof -u Benutzer Lists all open files for the specified user.
lsof -u ̂ root Lists all open files, except for those opened by root.
lsof -d txt  Displays a process list, similar to ps aux, by listing entries with the file 

descriptor entry txt, instead of the normal number (txt refers to program 
code and data, that is, for executed files).

lsof +L1  Displays all deleted files that are still open, and thus still occupy disk 
space, but are not part of any directory (files with less than one link).

lsof -i Network-related files.
lsof -i -P -n  All network-related files without the port number as a service identifier, 

and without resolving hostnames (for faster response).
lsof -i6 Shows IPv6-related files.
lsof -i | grep ‘\->‘ All active connections.
lsof -a -i -u www-data All open network files for the www-data account (AND relation -a).

Table 1: lsof Examples

Figure 3: The Java-based JLsof tool converts lsof output to a simple 

table.

01  COMMAND   PID     USER   FD   
TYPE  DEVICE     SIZE    NODE 
NAME

02  bash    30334 www-data  cwd    
DIR     3,8     4096 1571340 /
home/user/public_html/
w-agora/.m

03  bash    30334 www-data  txt    
REG     3,8   496231 1571405 /
home/user/public_html/
w-agora/.m/bash

04  bash    30334 www-data    0w   
REG     3,8      125 1571408 /
home/user/public_html/
w-agora/.m/LinkEvents

05  bash    30334 www-data    2u  
IPv4 4709341              TCP 
server.com:40001->undernet.
xs4all.nl:ircd ESTABLISHED)

Listing 2a: Bash 
Camouflage

COVER STORYlsof

31ISSUE 77 APRIL 2007W W W. L I N U X- M A G A Z I N E . C O M



The attacker has created a new direc-
tory .m to use as a working directory 
(Line 2, Column FD: Current Working 
Directory). The attacker has uploaded C 
files to the directory and then compiled 
and executed the files using a harmless-
sounding account name of bash. 

However, as you can see in Line 5, the 
programs are not as harmless as the 
name might suggest; this bash has an 
open connection to an IRC server. Plus, 
bash has written data to the LinkEvents 
file, which is obvious from the file de-
scriptor 0w (that is, bash has opened 
stdout for writing).

Cheeky but Dumb
Our cyber criminal is really cheeky, but 
the attacker’s methods reveal more self-
confidence than technical ability – espe-
cially considering the fact that he has 
not bothered to cover his tracks. Hiding 
the directory by starting the directory 
with a dot and using bash as the account 
name for the processes, are both begin-
ner’s tricks.

In the second example (Listing 2b), 
the attacker has found a similar security 
hole and installed several applications. 
Again, the attacker has not taken the 
trouble to cover up; the www-data ac-

count has a num-
ber of open ports, 
including on the 
Psybnc IRC proxy. 
The unique pro-
cess name of 
psybnc (Lines 5 
through 8) is a 
real give-away, 
but at least there 
is an attempt to 
hide the processes 
behind a familiar 
name – as the 
name server bind 
in Line 9. 

In fact, this is a 
patched SSH 
server that grants 
system access to 
www-data without requiring a password. 
There also is a server process with the 
suspicious name of a (see Lines 2 
through 4).

Automatation
You may have the need for a script that 
compares a known system status with 
the current status and responds in a pre-
defined way in case of deviations – that 
is, an anomaly detection system. With 

lsof, it makes sense to monitor a list of 
open ports, adding process names, user-
names, and interfaces. 

The command shown in Line 1 of List-
ing 3 handles the first part of this task in 

GUI fans may find it hard to locate a 
graphical front-end for lsof. The Libg-
nome-based glsof tool [3] is fairly new, 
and its developers are still extremely 
busy, although they have not made it 
past the alpha stage thus far. The release 
cycles are fairly short, so you might like 
to download the latest version from the 
Subversion repository. This actually 
turned out to be the only way to get 
things working in our lab. The glsof 
homepage has the usual howtos, and 
the developers will answer your email if 
you get stuck.

Glsof gives users the ability to set filters 
by pointing and clicking (Figure 1) and to 
store the settings so that they can run 
the same queries later. Filters support 
fairly complex rulesets, which you can 
view and analyze in the query debug-
ging window. Thus, glsof considerably 
shortens the learning curve for lsof new-
comers. The ability to set up file moni-
tors in glsof, to watch freely definable re-
sources, and to notify administrators in 
case of access is also useful. Under the 
hood, all glsof does is repeatedly call 
lsof, which lists access for the point in 

time when it was called. As this ap-
proach is not event-based, glsof can 
easily overlook short-term access.

The fairly ancient Java front-end, JLsof 
[4], which has not been updated since 
2003, has less in the way of functionality 
than glsof, but it also has fewer depen-
dencies. To install JLsof, you need to 
download and unpack the archive. You 
may need to modify the path to the Java 
interpreter and to lsof in the jlsof start 
script. JLsof has a far more spartan look 
than glsof, but it does show you how 
your filter settings resolve to lsof com-
mand line parameters (Figure 2), which 
is a good thing if you are trying to under-
stand the filter rules. Although you can’t 
actually store filters, JLsof will export the 
output (Figure 3) to an XML document.

If you use a Mac, there is no need to do 
without a native lsof GUI. Sloth [5], 
which was written in Objective C, scores 
with a nicely organized interface (Figure 
4) that offers predefined filters catego-
rized by resource type and the ability to 
terminate processes by clicking with the 
mouse (kill).

GUI Tools

Figure 4: Sloth provides a native lsof interface for Mac OS X.

01  COMMAND   PID     USER   FD   
TYPE    DEVICE SIZE NODE NAME

02  a       10555 www-data  266u  
IPv4      2808       TCP *:
https (LISTEN)

03  a       10555 www-data  267u  
IPv4      2809       TCP *:www 
(LISTEN)

04  a       10555 www-data  543u  
IPv4 757852768       TCP 
*:9713 (LISTEN)

05  psybnc  10615 www-data  266u  
IPv4      2808       TCP *:
https (LISTEN)

06  psybnc  10615 www-data  267u  
IPv4      2809       TCP *:www 
(LISTEN)

07  psybnc  10615 www-data  543u  
IPv4 757871322       TCP *:
ircd (LISTEN)

08  psybnc  10615 www-data  549u  
IPv4 762054917       TCP 
server.com:35614->oslo1.
no.eu.undernet.org:ircd 
(ESTABLISHED)

09  bind    22004 www-data  543u  
IPv4 696149859       TCP 
*:1982 (LISTEN)

Listing 2b: Injecting an IRC 
Proxy

lsofCOVER STORY

32 ISSUE 77 APRIL 2007 W W W. L I N U X- M A G A Z I N E . C O M



an elegant way. It tells lsof to output net-
work-related files (-i) without writing 
out the port numbers as service names 
(-P) and without resolving IP addresses 
to hostnames (-n). Awk checks the out-
put for listening ports (LISTEN status) 
and formats the output as: username/
processname/IP:Port, where an IP ad-
dress of * stands for a server that listens 
to all interfaces. 

The final sort organizes the output in 
alphabetical order, and -u ensures that 
each combination of user, process, and 
service occurs only once.

The output shown in Line 2 of Listing 
3 was taken from a Debian Sarge server 
with Apache 1.3, MySQL, and an SSH 
daemon. In our example, MySQL only 
binds to the local interface (Line 6), 
while Apache and SSH are accessible via 
any interface. 

The grouping of the Apache processes 
in root and www-data, which results 
from dropping root privileges after 

launching the program, 
is characteristic for the 
web server.

Do-It-Yourself 
IDS
The miniature lsof-based 
IDS in Listing 3 works 
as depicted in Figure 5. 
When launched, the 
script remembers (List-
ing 4, Lines 4 through 8) 
the current port configu-
ration. Every 10 seconds, 
it calls lsof to fetch the 
list of open ports and 
compares the list with 
the last known status 
(Line 12). If a change 
occurs, the script mails 
the before/ after status 
(Lines 14 through 0) and 
uses the new status for 
further comparisons (Line 22).

To test your do-it-yourself anomaly de-
tection system, you might like to tempo-
rarily open a port. Netcat offers an easy 
way to do so. Give a command like nc  
-l -p 12345 to launch Netcat in LISTEN 
mode (-l) and keep port 12345 open. 
Within 10 seconds, the shell script in the 
infinite loop should have noticed the sta-
tus change and responded accordingly.

Be aware that some processes change 
lsof’s view of the port assignments. For 
example, some email servers fork addi-
tional processes, depending on the sta-
tus of the incoming connection. Under 

certain circumstances, processes like this 
can cause false alerts, although it's fairly 
easy to avoid by modifying the logic be-
hind the query. Adding | grep -v tempo-
rary service in Line 5 should do the trick.

Conclusion
A simple shell script can’t hope to re-
place a full-fledged IDS, but if you’re 
looking for a no-frills detection tool or 
an extra line of defense, lsof could be 
a part of the solution. Useful additions 
might be cryptography-based configura-
tion management in the style of Aide, 
checks on executed files, evaluation of 
the UDP configuration, and many other 
things. Repeated calls to lsof can also 
open up new fields of application, as evi-
denced by the file monitor options in 
Glsof. Whether you script with lsof or 
use it as a fast, universal administration 
tool, lsof is an easy, if limited, tool for 
spotting intruders.  ■

01  $ lsof -i TCP -n -P | awk '/
LISTEN/ {print $1"/"$3"/"$8}' 
| sort -u

02  apache/root/*:443

03  apache/root/*:80

04  apache/www-data/*:443

05  apache/www-data/*:80

06  mysqld/mysql/127.0.0.1:3306

07  sshd/root/*:22

Listing 3: Open TCP Ports

Figure 5: The script shown in Listing 4 alerts the administra-

tor whenever a change occurs in the port assignments. To do 

so, it compares the original status with the current status 

every 10 seconds.

Read current
port assignments

Read initial 
port assignments

No port 
assignment 

changed?

Email
to 

administrator

Current port 
assignment be-

comes new standard

YesNo

01  #!/bin/bash

02  MAILTO="root"

03  HOSTNAME=`hostname`

04  getports() {

05    lsof -i -n -P | awk '/LISTEN/ 
{print $1"/"$3"/"$8}' | sort 
-u

06  }

07  

08  OLD="$(getports)"

09  echo -e "Start with following 
port assignments:\n$OLD"

10  while sleep 10 ; do

11    NEW="$(getports)"

12    if test "$OLD" != "$NEW" ; 
then

13      echo "Port assignments 
changed! Notify administrator 
by email"

14      mail -s "Attention: 
$HOSTNAME LISTEN status 
changed" $MAILTO <<EOF

15  Status prior to change:

16  $OLD

17  

18  Status after change:

19  $NEW

20  EOF

21    fi

22    OLD="$NEW"

23  done

Listing 4: Port Monitoring

[1]  lsof homepage on Freshmeat:  
http:// freshmeat. net/ projects/ lsof/

[2]  lsof FAQ: ftp:// lsof. itap. purdue. edu/ 
pub/ tools/ unix/ lsof/ FAQ

[3]  Glsof: http:// glsof. sourceforge. net

[4]  JLsof: http://www.geocities.co.jp/Sili-
conValley/1596/jlsof/readme.html

[5]  Sloth:  
http:// www. sveinbjorn. org/ sloth/

[6]  Hardened PHP:  
http:// www. hardened-php. net

INFO

COVER STORYlsof

33ISSUE 77 APRIL 2007W W W. L I N U X- M A G A Z I N E . C O M


