
66

Australia, the land of many un-
usual and spectacular creatures,
has brought forth yet another

sensational beast. But before natural
history buffs start running for their cam-
eras, let me explain that it was computer
scientists at the Melbourne University
Campus [1] who created this new exotic
creature that is the programming equiva-
lent of an egg-laying mammal.

This new language, Mercury, includes
features associated with imperative lan-
guages like C and C++, but also con-
tains features of functional and logic
programming languages like Haskell or
Prolog. According to the Mercury proj-
ect, the reason for developing Mercury
was that although logic programming
languages offer several powerful benefits
for the programmer, logic languages suf-
fer from two significant disadvantages:
• compilers for logic programming

languages pick up fewer errors at
compile time;

• programs written in logic program-
ming languages tend to run slower
than programs written in imperative
languages like C.

The Mercury project is an attempt to

provide the advantages of a logic pro-
gramming language without the penal-
ties in run-time efficiency, reliability, and
manageability. Mercury is a 100 percent
declarative language. According to the

The Mercury programming language offers the expressive power of logic programming with the

performance of an imperative language like C or C++. BY NICK RUDNICK

Introducing the Mercury declarative, logical-functional, OO programming language

OUT OF THE LAB

Our Fibonacci listing (Listing 1) is a
simple benchmark for measuring the
relative performance of programming
languages – you can just enter time
./fibonacci. The average time on my lab
machine was more or less eight sec-
onds, whereas the Java JDK 1.5 took
seven seconds, and a corresponding C
program (GCC 4.1) took ten seconds.
These results cautiously hint that Mer-
cury is a front-runner in traditional appli-
cation fields.

In fact, thanks to full declarativity,
Mercury enjoys one of the world’s
most advanced profiling tools, the deep
profiler mdprof. It provides much more
content info for measurements than

conventional graph profilers and allows
profiling space and time in the same run.

For more rigorous benchmarks, check
out the Mercury website [1]. The com-
parison with Prolog-style languages is
slightly older, but at the time Mercury
was 24 to 116 times faster than SWI Pro-
log and 3 to 10 times faster than SICStus
Prolog (but only marginally faster than
SICStus at solving the queens problem).
Another benchmarking paper with con-
straint solving by Becket et al can also
be found at the Mercury site [6]. Even
though these results were published by
the Mercury team, Mercury’s perfor-
mance seems plausible on basis of the
distinct scientific concepts.

Benchmarking
F
ra

n
z
 P

flu
eg

l, Foto
lia

MercuryPROGRAMMING

66 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

67

Mercury project, Mercury offers “strong
type and mode systems that detect a
large percentage of program errors at
compile time” [3]. This sophisticated
beast supports working with higher
order logic, and Mercury includes a vari-
ety of options for object-oriented con-
structs (such as design patterns). Ac-
cording to all my reports, Mercury is by
far the fastest language with respect to
logic and constraints, and Mercury is an
excellent player in the “fastest language”
league. It is suitable for highest speed
neuronal networks (with conventional
hardware), has exemplary compile-time
error detection and profiling, and pro-
vides an architecture designed for large-
scale projects with hundreds of thou-
sands of lines of code.

To achieve this ambitious collection of
attributes, Mercury makes extensive use
of modes. This concept will be familiar
to Corba, IDL, or Ada programmers who
use modes to define the read and write
semantics of variables, in addition to the
type. Mercury draws its strength from a
similar, but far more fundamental, sys-
tem that creates a descriptive dimension
orthogonal to types.

The concept of strong modes – and
Mercury therewith – was developed by
Zoltan Somogyi [2] in the late 1980s.
Parallel work on linear types by Philip
Wadler [5], creator of the Haskell pro-
gramming language, reveals that this
approach offers benefits over classical
logic, relating on a deeper layer discov-
ered by French logician Jean-Yves Girard
[4] known as linear logic, which is con-
sidered very computer friendly.

Getting Started
Although many Linux distributions
include the Mercury source code, it is a
good idea to download the source from
the Mercury project website [1] and
manually build it using ./configure,
make, make install. The compile can
take a while even on fast hardware. To
compensate for this, the install process
sets up multiple compiler grades for dif-
ferent usages like compiling, debugging,
parallelism, etc. These can also be man-
ually disabled during compilation. Don’t
forget the mercury-extras, which you
can compile with Mercury by running
mmake depend, mmake, mmake install.

Now it is a good idea to adapt your
PATH, type (see Listing 1), and create

your first Mercury execut-
able with mmake fibo-
nacci.depend and then
mmake fibonacci. Mercury
programming is home
ground for Linux users, so
don’t bother looking for a
mouse-pushing front-end.
Mercurians tend to prefer
text-based editors such as
vi and (X)Emacs (see
Figure 1).

Modes and
Predicates
The predicate concept of
logic programming might
take some explaining for
programmers more famil-
iar with imperative lan-
guages. If you can imagine
functions or methods as
precisely defined units for
converting input into out-
put variables, then predi-
cates are just a more re-
laxed system for handling
incomplete data. You don’t
need to define which vari-
able defines which other
variable up front. Instead,
you just string a loose group of condi-
tions together and let the system decide
how everything works. SQL queries fol-
low a fairly similar approach.

The idea of writing whole programs in
this way – leaving the question of how

to execute a program up to the machine
– was what powered the Prolog craze at
the end of the last century. In fact, this
logic applies a number of constraints;
thus, Prolog does not fulfill the promise
of its design in real-life applications. The

01 :-module fibonacci.

02 :-interface.

03 :-import_module io.

04

05 :-pred main(io, io).

06 :-mode main(di, uo) is det.

07

08 :-func fib(int)= int.

09

10 :-implementation.

11 :-import_module int, list,
string.

12

13 main(!IO) :-

14 command_line_arguments(Args,
!IO),

15 (if Args = [Arg|_] then

16 Number = det_to_int(Arg),

17 format("Fibonacci number
for %d is %d\n",

18 [i(Number),
i(fib(Number))],

19 !IO)

20 else

21 true

22).

23

24 fib(Number)= (

25 if Number < 2 then

26 1

27 else

28 fib(Number - 1) +
fib(Number - 2)

29).

Listing 1: fibonacci.m

Figure 1: Colors of Mercury with XEmacs as an example.

PROGRAMMINGMercury

67ISSUE 78 MAY 2007W W W. L I N U X- M A G A Z I N E . C O M

renunciation of this strategy is one of
Mercury’s key characteristics.

One of Mercury’s defining properties
is that it uses modes throughout. Other
languages, like IDL or Ada, use modes
too, but they enter a completely new
syntactical dimension in Mercury. Four
modes are all you need to know to start.
in and out represent data that enters and
leaves, respectively, a
block of code. Mercury
applies strict distinctions
here – an inout mode
does not exist.

But Mercury reveals its
true nature by two other
modes that occur in the
mode declaration for
main/2 in Listing 1 (line
6): di (destructive input) means that all
other references to the data unit must be
destroyed on entering the code block,
and uo (unique output) means that the
data unit from the code block can only
be passed on exactly once. Used in com-
bination, these modes ensure the unique
occurrence of specific data units.

The most spectacular application of
unique modes is input/ output, which is
handled declaratively, in contrast to
other Prolog-style programs.

The power of threading reveals itself
in the expression !IO – pure syntactic
sugar that avoids the need to enumerate
variables:

main(IO_0, IO_2) :-
 write_string("First\n", U
 IO_0, IO_1),
 write_string("Second\n", U
 IO_1, IO_2)

Generally speaking, unique modes sup-
port the use of critical “procedural” lan-
guage constructs without sacrificing the

declarative nature of the
language.

The Type System
Mercury’s type system is
closely modeled on typed
functional languages. To
help explain this, con-
sider the discriminated
union type constructor,

which C programmers will recall as a
mixture of enumeration, union, and
struct. It is a semicolon-separated
collection of identifiers, which in turn
can contain other fields as parameters:

:-type address --->
 address (street :: string,
 zip :: int,
 city:: string);
 always_on_the_road;
 unknown.

The names allow access, just like get-
ters and setters in object-oriented lan-
guages. Of course, the Mercury type

system supports generics (templates in
C++). The following example shows a
type constructor for lists of self-definable
element types:

:-type list(Type) --->
 [] ; % empty
 [Type | list(Type)] .

The next, more lengthy, example con-
tains a predicate append/3 for lists in
which the third argument has to corre-
spond to the concatenation of the first
two arguments. Prolog very often fails
to put its money where its mouth is and
simply defines the following:

append([], List, List).
append([X|LXs], RXs, [X|Xs]) :-
 append(LXs, RXs, Xs).

This is quite problematic as the con-
struct implies nonsensical and/ or unin-
tended modes such as append(out, out,
out). Also, this construct cannot be effi-
cient for all modes equally; it is very ex-
pensive for append(out, in, in) when
the left sublist must be determined. In
contrast, Mercury can solve the problem
correctly with the use of different predi-
cates for these special cases (Listing 2).

All of these mode declarations mean a
lot of typing, of course, but you are
highly unlikely to find a real-life applica-
tion in which you need every single

01 :-interface.

02

03 :-pred append(

04 list(T),list(T),list(T)).

05 :-mode append(in, in, in)

06 is semidet.

07 :-mode append(in, in, out)

08 is det.

09 :-mode append(in, out, in)

10 is semidet.

11 :-mode append(out, in, in)

12 is semidet.

13 :-mode append(out, out, in)

14 is multi.

15

16 :-implementation.

17

18 :-pragma promise_pure(

19 append/3).

20 append(

21 LXs::in, RXs::in, List::out)
:-

22 append_1(LXs, RXs, List).

23 append(

24 LXs::in, RXs::out, List::in)
:-

25 append_1(LXs, RXs, List).

26 append(

27 LXs::out, RXs::out, List::
in) :-

28 append_1(LXs, RXs, List).

29 append(

30 LXs::out, RXs::in, List::in)
:-

31 append_2(LXs, RXs, List).

32

33 :-pred append_1(

34 list(T),list(T),list(T)).

35 :-mode append_1(in, in, in)

36 is semidet.

37 :-mode append_1(in, in, out)

38 is det.

39 :-mode append_1(in, out, in)

40 is semidet.

41 :-mode append_1(out, out, in)

42 is multi.

43 append_1([], List, List).

44 append_1(

45 [X|LXs], RXs, [X|Xs]) :-

46 append_1(LXs, RXs, Xs).

47

48 :-pred append_2(

49 list(T),list(T),list(T)).

50 :-mode append_2(out, in, in)

51 is semidet.

52 append_2(LXs, RXs, List) :-

53 list.remove_suffix(List,
RXs, LXs).

Listing 2: append/ 3

Figure 2: GUI building blocks

from Tk are perfect with

Mercury.

MercuryPROGRAMMING

68 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

mode combination. Thus, typically,
strong modes enhance reliability and
performance at a look and feel more
familiar to non-logical programming.

Mercury has an amazingly elegant ap-
proach to handling an unknown number
of solutions. The solutions function can
discover the number of solutions for a
predicate that is not det in, say, a list of
unique entries. It also supports higher
order logic; in other words, functions or
predicates themselves can be arguments
in other functions or predicates.

Mercury’s higher order logic equip-
ment by no means is a half-hearted gim-

mick, but on a level with languages such
as Haskell, Caml, and SML. In fact, I
went through a number of exercises in
popular textbooks for other program-
ming languages and I had no trouble
solving them with slight modifications
to the syntax.

Tk GUI
Our first practical example is from the
world of GUI programming. I want to
assign a simple instruction to a button
and run the instruction when the button
is clicked. Like many other languages,
Mercury has a Tcl/ Tk interface: Tcl/ Tk is
extremely popular because of its ease of
handling. The list of Tk GUI elements ac-
cessible via the Mercury interface is not
complete but is easily extensible, assum-
ing you have some basic knowledge of C
and Tcl/ Tk. You can embed native C
code in Mercury by just entering it in the
Mercury source code; everything else is
handled automatically. Besides offering
an elegant approach, Mercury is aug-
mented by the extremely C-friendly Tcl/
Tk interface. Also, Mercury and Tcl/ Tk
have a common string interface; thus,
four lines of code is all it takes to add a
cget for reading widget configurations.
(Listing 3).

By systematically working my way
through the Tk examples in a popular
textbook, I converted them to Mercury.
Required extensions were a question of
minutes in most cases. However, GUI
programming also provides a good ap-
proach to demonstrating some of the
more advanced aspects of the language
(Listing 4).

The example passes in two predicates
as arguments. For one, this passes the
action reportColor/4 into a button to be
triggered at clicking, and the Tcl/ Tk in-
terpreter receives its intended behavior
that way, in the form of the task/3 predi-
cate that is passed in (task/ output). If
you use Mercury every day, you will
soon discover that higher order expres-
sions have more than curiosity value. In
fact, they can become a good habit that
makes your life much simpler, which
does not compare with the clumsy way
this kind of case is handled in Java. Note
that this example uses namespaces such
as mtcltk. or mtk., which I have not re-
ferred to thus far.

Mercury preserves one of the major
benefits of Tk syntax – widgets can be
configured simply by chaining key value
pairs together. This gives programmers
the ability to express GUIs concisely.

01 main(!IO) :-

02 mtcltk.main(

03 pred(Tk::in, I::di, O::uo)
is det :-

04 task(Tk, I, O),

05 ["Keys"],

06 !IO).

07

08 :-pred task(tcl_interp, io,
io).

09 :-mode task(in, di, uo) is
det.

10 task(Tk, !IO) :-

11 Frame = mtk_core.root_
window,

12 configure(Tk,

13 Frame,

14 [height(40),

15 width(400),
background("green"),

16 padx(50), pady(10)],

17 !IO),

18 newKey(":-0", "yellow",

19 Tk, Frame, YellowKey, !IO),

20 newKey(":-o", "red",

21 Tk, Frame, RedKey, !IO),

22 newKey(";-)", "blue",

23 Tk, Frame, BlueKey, !IO),

24 mtk.pack(Tk,

25 [pack(YellowKey, []),

26 pack(RedKey, []),

27 pack(BlueKey, [])],

28 !IO).

29

30 :-pred newKey(string, string,

31 tcl_interp, widget,
widget,

32 io, io).

33 :-mode newKey(in, in, in,

34 in(toplevel), out,

35 di, uo) is det.

36 newKey(Label, Color, Tk,

37 Frame, Key, !IO) :-

38 mtk.button(Tk,

39 [text(Label),

background(Color),

40 active_background(Color),

41 padx(50)],

42 Frame,

43 Key,

44 !IO),

45 configure(Tk, Key,

46 [command(reportColor(Key))
], !IO).

47

48 :-pred reportColor(widget,
tcl_interp,

49 io, io).

50 :-mode reportColor(in(button),
in,

51 di, uo) is det.

52 reportColor(Key, Tk, !IO) :-

53 cget_string(Tk, Key,
"background", HgColor, !IO),

54 io.write_string("Clicked:
'-background "++HgColor++"'",
!IO), nl(!IO).

Listing 4: GUI Buttons and Triggered Action

01 cget_string(Tcl, Widget,

02 ConfName, Ergebnis, !IO)
:-

03 unwrap(Widget, WidgetId),

04 eval(Tcl,

05 WidgetId++" cget
-"++ConfName,

06 Success, Results, !IO),

07 (if Success = tcl_ok then
true

08 else error(Results)).

Listing 3: cget
(embedded Tcl/ Tk)

PROGRAMMINGMercury

69ISSUE 78 MAY 2007W W W. L I N U X- M A G A Z I N E . C O M

insts and modes
The in, out, di, and uo modes are just
the very beginning of Mercury’s power-
ful mode system. The logical result
of Mercury’s modes is an additional
descriptive system.

First, you will need to understand that
a mode can be broken down into two
instantiation states and it can even de-
scribe the transition between one state
and the other.

The simplest examples are bound (de-
termined by the context) and free (not
determined in any way by the context).
Thus, in reflects the state change bound
>> bound and out the state change free
>> bound.

The complexity of a Mercury mode
can be traced back to its instantiation
states, which can be defined with a sep-
arate declaration: :-inst In Listing 3,
GUI elements have their own instantia-
tion states, from which relating modes
can be derived with parenthesis opera-
tions: in(toplevel) or in(button). Addi-
tionally, the prolific use of the functional
modes and predicates is a defining char-
acteristic of the language.

In Listing 5, the parameters in the Tk
Widget configuration list have different
individual instantiation states. Once you
get used to thinking about this sepa-
rately, the whole process becomes as
easy as a type/ class declaration.

Object Oriented
Mercury supports many different styles
of programming, making it easily acces-
sible to newcomers. Because the borders
between paradigms are not strict, many
roads can lead to Rome.

Because object-oriented (OO) pro-
gramming is very popular, I thought it
would be interesting to find out to what
extent Mercury will allow OO program-

mers to stick to their old habits. Many of
the details for OO programming in Mer-
cury are still not in place, but Mercury
still supports it for the most part. The
developers are working on some OO fea-
tures now, and more details will emerge
in the near future.

Mercury has a CORBA interface, and
another type system is designed to allow
programmers to easily render existing
OO constructs from languages such as
Java and C++ in Mercury. Thus, OO
programmers can easily migrate their fa-
miliar architecture patterns to Mercury.

The notation could be hard to get used
to at first because it does without the ob-
ject name when functions or predicates
are called.

A touch less of the syntactical candy
might be better for developers with OO
roots. The :-typeclass ... type classes cor-
respond to Java interfaces for the most
part. For example, a low-level stream
should support reading the error status
(Listing 6).

The implementation is anchored to
specific types, which actually represent
the equivalent of a method-free class in
OO languages. After finding a suitable
type, the methods of the current type
class interface are added, on the basis of
the type, with an :-instance ... declara-
tion (Listing 7).

01 :- inst button_config

02 ---> ...

03 ; background(ground)

04 ; ...

05 ; command(pred(in, di,
uo) is det)

06 ; ...

07 ; text(ground)

08 ; ...

Listing 5: Tk Instantiation

01 :-typeclass lowlevel(STREAM)

02 where [

03 % Stream, Message, OnError,
!IO

04 pred get_error(STREAM,
string,

05 bool, io, io),

06 pred get_error(in, out,

07 out, di, uo) is det

08].

Listing 6: Type Class

01 :-type stream ---> ...

02 :-instance lowlevel(stream)
where [

03 (get_error(Stream, Message,
OnError, !IO) :-

04 ...

05)

06].

Listing 7: Type Class +
Methods

01 :-pred use(S, io, io) <=
lowlevel(S).

02 :-mode useStream(in, di, uo).

03 useStream(Stream, !IO) :-

04 ...

05 get_error(S, Message,
IsError, !IO),

06 (if IsError = yes then

07 write_string("Error:
"++Message++"\n", !IO)

08 else ...

Listing 8: Interface

01 :-typeclass output(STREAM)

02 <= lowlevel(STREAM) where
[

03 % Stream, Char, Success, !IO

04 pred write_char(STREAM,
char,

05 bool, io, io),

06 pred write_char(in, in,

07 out, di, uo) is det

08].

Listing 9: Extending Type
Classes

01 :-typeclass ostreamCollection
(OSTREAMS) where [

02 pred
writeCharInAll(OSTREAMS,
char, io, io),

03 mode writeCharInAll(in, in,
di, uo) is det

04].

05 :-instance ostreamSammlung(li
st(OSTREAM)) <=
output(OSTREAM) where [

06 writeCharInAll([], _Char,
!IO),

07 (writeCharInAll([OStream|Xs]
, Char, !IO) :-

08 write_char(OStream, Char,
_, !IO),

09 writeCharInAll(Xs, Char,
!IO)

10)

11].

Listing 10: Class-Specific
Interfaces

MercuryPROGRAMMING

70 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

Referencing an interface is a little com-
plex (Listing 8). You can follow similar
approaches to extend type classes, and
multiple inheritance is supported (see
Listing 9). In a similar way, the instance
declaration supports class-specific use of
interfaces (Listing 10).

Recently, the typeclass system has
found a further extension allowing in-
stances upon polymorphic types. That
being said, the architectural patterns the
object-oriented community knows and
loves can be implemented in Mercury
right now without headaches. The limi-

tations in this regard have
become exceptions, rather
than the norm.

Library Support
The Mercury compiler
distribution already has
all the major elements
needed to build a com-
piler: aggregate types
such as trees and sets, lex-
ers, parsers, syntax pro-
cessing, random numbers,
benchmarking, error-han-
dling, and so on. For other
types of applications, it is
advisable to check out the
tools distribution, which
includes CGI support, an
ODBC interface, stream
handling, and even sock-
ets. This distribution also
includes an XML process-
ing feature, which is quite

useful in real-life programming tasks.
Mercury offers several approaches to

implementing GUIs. On the one hand,
it supports the curses libraries and spar-
tan-style, console-based access. On the
other hand are GUI toolkits, such as the
lean, Xlib-based Easy X Library or the
tried and trusted Tcl/ Tk. If this is not
enough to keep you happy, you’ll find
an OpenGL interface for more exacting
tastes (Figure 3).

Mercury’s answers to Flex and Bison
are located in the lex and moose pack-
ages. Libraries can be found for complex

numbers and genetic algorithms for sci-
entific calculations; the latest addition is
a toolkit for neuronal networks, which is
one of the fastest of its kind.

Constraint solving is in a state of flow
at the moment, but one can already ex-
periment with constraints or construct
own solver types.

Not just part of the library, but defi-
nitely worth mentioning for all those
who are not fans of opulent GUI sys-
tems, is the advanced development envi-
ronment, which includes a convenient
declarative debugger, a random genera-
tor unit testing, and a tool to check for
test coverage, to name just a few. The
collection of these libraries further rein-
forces the notion that Mercury is in-
tended for doing ambitious projects.

Conclusion
All told, Mercury still needs a fair
amount of hacker culture and some pio-
neering spirit to navigate the various
minor bumps. Experienced Linux users
who are not afraid of riding an untamed
mustang should have no trouble with
using Mercury productively. Even new-
comers who just want to give Mercury
a trial run are guaranteed an exciting
afternoon of hacking. ■

Constraint solving means that a pro-
gramming system contains a number
of mandatory conditions and autono-
mously discovers solutions to problems
on the basis of the idea that the user sim-
ply has to formulate the task. In practical
applications, constraint solving has actu-
ally proved capable of resolving various
planning issues, especially in high-tech-
nology areas. Although constraint solv-
ing is cited as a prime example of the
use of Prolog, the efficiency of Prolog-
based constraint solving has often
proved unsatisfactory in the past. For
this reason, constraint-solving systems
have often been implemented in tradi-
tional, non-declarative languages to
boost performance.

Mercury did not support constraint solv-
ing for a long time, but the HAL con-

straint logic programming system
demonstrated considerable performance
benefits based on Mercury. The HAL
Project has been succeeded by the G12
project [7], a pan-Australian effort
through which quite a lot of HAL has
found its way into the solver-type system
of Mercury. In distinction to other logical
programming system, one departs from
a rather black box approach to a highly
customizable constraint solving system
for uncompromised performance.

Again, constraint solving is reflected
by an extension to the mode system.
An any (meaning “not yet specified”)
state has been added to the free and
bound instantiation states. The way the
constraint task is postulated defines
which data units are constrained by
what.

Constraint Solving

[1] Mercury project website: http:// www.
mercury. csse. unimelb. edu. au

[2] Zoltan Somogyi, University of Mel-
bourne, http:// www. cs. mu. oz. au/ ~zs/

[3] The Mercury Project: Motivation and
Overview: http:// www. mercury. csse.
unimelb. edu. au/ information/
motivation. html

[4] Jean-Yves Girard, Director of Re-
search at CNRS: http:// en. wikipedia.
org/ wiki/ Jean-Yves_Girard

[5] Philip Wadler, University of Edin-
burgh, http:// homepages. inf. ed. ac. uk/
wadler

[6] Ralph Becket, Maria Garcia de la
Banda, Kim Marriott, Zoltan Somogyi,
Peter J. Stuckey, and Mark Wallace,
“Adding constraint solving to Mer-
cury,” Proceedings of the Eighth Inter-
national Symposium on Practical As-
pects of Declarative languages,
Charleston, South Carolina, January
2006, page 16ff. The paper is also
available at http:// www. mercury. csse.
unimelb. edu. au/ information/ papers.
html#padl06solver.

[7] G12 project:
http:// www. g12. cs. mu. oz. au/

INFO

Figure 3: Mercury has an OpenGL library for more demand-

ing GUI applications.

PROGRAMMINGMercury

71ISSUE 78 MAY 2007W W W. L I N U X- M A G A Z I N E . C O M

