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Optimization saves execution 
time. Unfortunately, optimizing 
lengthens development cycles. 

The optimized source code is typically 
more complex than the original code, 
which increases the time for testing and 
debugging. Adding complexity also 
makes the code more difficult to main-
tain. Because the optimization process 
takes time and adds complexity, it is best 
to avoid optimizing code while you are 
writing it. Before you start optimizing, 
start with a stable program. Once your 

program is stable and complete, you can 
look for ways to improve performance. 
In this article, I describe some strategies 
for optimizing Python programs.

Where to Optimize
From the developer’s perspective, a pro-
gram is never just slow or fast. Before 
you start accelerating code sections, it is 
important to discover exactly where the 
bottlenecks occur. The first step is to 
find out whether the CPU or I/ O system 
is slowing down your software when a 
specific function is executed. It does not 
make sense to optimize the execution 
time for an algorithm by a factor of 100, 
only to discover that the hard disk or 
network is to blame.

To find out if a slow CPU, a slow hard 
disk, or some other hardware compo-
nent is causing the problem, you can use 
a GUI-based tool such as Xosview [1] or 
Gkrellm [2]. Also, tools such as Dstat [3] 
give statistics for data transfers from and 
to specific partitions. To achieve plausi-
ble results, you must make sure the com-
puter is not running any other processes 
that could cause additional load. As an 
alternative, top and ps give individual 
process performance data.

Figures 1 and 2 show screenshots of 
Gkrellm and Dstat for a process that is 
limited by CPU or data-transfer perfor-

mance. The problem of data transfer is 
more difficult to identify than a CPU bot-
tleneck because there is no hardware- 
independent upper threshold. 

The best way to determine threshold 
values is to refer to hardware specifica-
tions or use benchmarks. Note that data 
transfer can refer to a CD-ROM drive, as 
in our example, but it can just as easily 
refer to a network interface, a tape auto-
changer on a backup system, and so on.

If 100 percent CPU load is slowing 
your program down, you will need to 
identify the sections of code that are 
causing the problem. The cProfile Py-
thon module can help you evaluate the 
results returned by the Pstats module.

As a practical example showing a Py-
thon profiler at work, consider the Gen-
too Linux package management tool 
Emerge, which is written in Python. A 
search with emerge --search python takes 
just 10 seconds to execute on my com-
puter. It wouldn’t make sense to start 
optimizing this, unless you have a slow 
computer, but this is an example of how 
to approach the analysis phase.

Generating run-time statistics with Py-
thon’s cProfile module is a bit compli-
cated because the profiler's command-
line interface doesn't see the need to 
pass in command-line parameters to the 
program you are calling, which is why I 

Optimizing Python scripts

RUNNING LEAN

>>> import cProfile

>>> import sys

>>> sys.argv.append("--search")

>>> sys.argv.append("python")

>>> f = open("/usr/bin/emerge")

>>> ef = f.read()

>>> f.close()

>>> cProfile.run(ef, "emerge.
stats")

Searching...

[ Results for search key : python 
]

[ Applications found : 48 ]

...

Listing 1: cProfile

The trick to optimization is to 

save time in the right places.  
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used the interactive inter-
preter (Listing 1). After im-
porting the required Python 
modules, and preparing the 
parameters, I type cProfile.
run() to start the test run. 
The Pstats module outputs 
a table with the run-time 
statistics (see Listing 2).

Although a genuine bot-
tleneck does not occur here, 
you might optimize a cou-
ple of points. For example, 
Emerge does take 1.2 sec-
onds of 9 to update the 
progress indicator (update_
twirl method; you can see 
this in the cumtime [cumu-
lative time] column in List-
ing 2). However, an Emerge 
option can switch off this 
display. About 1.2 seconds are used for 
time-intensive deep copying. If deep 
copies are not really needed, there is 
some scope for savings.

To accelerate code with a CPU bottle-
neck, do things faster or do things less 

often. If you replace your 
own flat-file data manage-
ment system with a data-
base such as SQLite [4], 
you can often achieve both 
goals. Of course, the goal is 
to achieve maximum, or at 
least sufficient, speed bene-
fits with a minimum of de-
velopment effort. And you 
still need to consider main-
tainability of the code.

Before you start measur-
ing the speed of your code, 
you need to make sure the 
code is as free of error as 
humanly possible. If your 
code has errors, the danger 
is that you might be “opti-
mizing” code that only runs 
slowly because it is buggy. 

Automated tests, written with the doctest 
and the unittest Python modules, can 
help reduce errors when modifying code.

The next step is to start profiling to 
find the most important code sections 
for optimization. The best candidates for 

optimization will typically be the sec-
tions with the highest total run time – 
that is, sections in which the product of 
the run time and the frequency of execu-
tion is particularly high. It normally 
makes more sense to optimize a function 
that executes 10,000 times and takes a 
second per run than to optimize a func-
tion that runs just five times and takes 
10 seconds. But you also should consider 
the extent to which the program run 
time affects the user experience. You 
might discover that the program simply 
seems to be lagging slightly in the first 
case, whereas the second case imposes 
a 10-second wait on the user.

Optimization Techniques
Replacing an algorithm with a more ef-
fective algorithm is one way to acceler-
ate a program. Whereas most optimiza-
tion techniques will speed up the code 
by a factor of 10 percent at the most, re-
placing an algorithm can achieve speed 
benefits of several hundred percent!

Big-O notation is used to describe the 
complexity of an algorithm. The “O” 

Figure 1: Gkrellm on 

the left shows 100 

percent CPU load for 

a process with a CPU 

bottleneck. The pro-

gram on the right shows 

the data throughput 

when copying a CD.

01  >>> import pstats

02  >>> s = pstats.Stats("emerge.stats")

03  >>> s.sort_stats('time')

04  <pstats.Stats instance at 0xb7d80eac>

05  >>> s.print_stats(10)

06  Sun Oct  1 23:12:36 2006    emerge.stats

07  

08           602508 function calls (586701 primitive calls) in 9.052 CPU seconds

09  

10     Ordered by: internal time

11     List reduced from 609 to 10 due to restriction <10>

12  

13     ncalls  tottime  percall  cumtime  percall filename:lineno(function)

14       1240    1.022    0.001    1.022    0.001 {method 'readlines' of 'file' objects}

15      11387    0.849    0.000    0.849    0.000 {method 'flush' of 'file' objects}

16       1096    0.579    0.001    1.513    0.001 /usr/lib/portage/pym/portage.py:200(cacheddir)

17  14550/160    0.421    0.000    1.173    0.007 /home/schwa/python2.5/lib/python2.5/copy.py:144(deepcopy)

18      76352    0.359    0.000    0.359    0.000 {method 'append' of 'list' objects}

19          1    0.335    0.335    2.513    2.513 <string>:468(output)

20  66288/66173    0.316    0.000    0.317    0.000 {len}

21      11383    0.256    0.000    1.225    0.000 <string>:94(update_twirl)

22      36953    0.224    0.000    0.224    0.000 {method 'split' of 'str' objects}

Listing 2: Pstats
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here stands for the “order” of the algo-
rithm. The expression in parentheses de-
scribes how the performance changes 
with respect to a change in the data 
input – the number of values in a list, or 
a string length, for example. An O(n) al-
gorithm will take twice as long to handle 
twice the volume of data, whereas an 
O(n2) algorithm would take four times 
as long for twice the volume of data. 

Obviously, it is desirable for the ex-
pression in the parentheses to grow only 
little, despite an increasing value for n. 
Table 1 shows the performance for vari-
ous Python algorithms. The performance 
decreases from top to bottom.

In multiply-nested loops, or for some 
combinatorial problems, the perfor-
mance ratio can be greater than quad-
ratic. In this case, even small values of 
n will lead to poor performance. If the 
code causes a bottleneck, you should 
look to avoid algorithms of more than 
quadratic order for larger values of n.

If you are running an algorithm 
against a smaller volume of data, a more 
complex algorithm can be faster. With 
some algorithms, the run time will only 
increase slowly as n grows; however, a 
longer preparatory step might be 
needed. In this case, a “slower” algo-

rithm that avoids the 
need for a prepara-
tory step could ulti-
mately be faster.

Comparing algo-
rithms on the basis 
of their order is use-
ful in principle, but 
the technique might 
not be applicable in 
the wild, at least not 
for all possible vol-
umes of data. For 
example, regardless 
of the theoretical ef-
ficiency of an algo-
rithm, the perfor-
mance could be 
drastically reduced if 

the list you need to sort does not fit into 
memory and the operating system has to 
start swapping memory out to disk. Ef-
fects like this also come into play if the 
memory management of the underlying 
C standard library has a major influence 
on the run time.

Optimized Set Intersection
Let’s look at another example. Each of 
the Python functions I will be investigat-
ing finds the intersecting set of two lists 
– list elements that occur in both lists – 
and returns a new list with the results.

The first algorithm I use is of quadratic 
complexity given two lists with n ele-
ments (Listing 3). The outer loop iterates 
over all the elements in the first list, with 
linear complexity. The loop contains a 
second implicit loop, which is hidden in 
the value in list2 test condition. 

The search in list2 is linear, so I need 
to consider the two occurrences of linear 
complexity. The nesting of the explicit 
outer loop and the implicit inner loop 
makes this an O(n2) algorithm. Al-
though the determination of the keys in 
the return instruction is linear, this is in-
significant compared with the quadratic 
complexity of the previous algorithm 
with respect to n. In general, it is prefer-

able to avoid nested loops. At best, this 
will give you quadratic performance; 
this said, optimization is probably not 
worthwhile for smaller volumes of input.

The algorithm in Listing 4 is a modi-
fied version of the previous algorithm 
with linear complexity. The code looks 
like the previous listing, but it creates a 
dictionary from the second list before en-
tering the outer loop and then uses the 
dictionary in the loop.

value in dict2 shows constant perfor-
mance, so the bottom line results in a 
linear outer loop. The last algorithm also 
results in linear performance (Listing 5). 
The operation that converts the first list 
to a set is linear, as is the generation of 
the resulting set by the intersection 
method and the conversion of the result-
ing set to a list. Although the syntax for 
these operations is nested, they actually 
run sequentially. Three sequential linear 
steps result in an O(n) algorithm.

Better Algorithms
The previous examples suggest a num-
ber of optimization rules you may know. 
For example, operations whose results 
do not change through multiple itera-
tions of a loop should be moved in front 
of the loop, thus avoiding the need to ex-
ecute them in each iteration.

The principle of divide and conquer 
might work fine with data. A well-
known example of this is a binary search 
that requires presorted data but returns 
the results with a complexity of O(ln n), 
rather than O(n). However, if you are 
handling a small volume of input data, a 
trivial linear search will be just fine.

Instead of constantly reloading or re-
calculating, you can cache values. But 
consider the consequences and possible 
data inconsistency, especially on systems 
that use multiple threads or transactions. 

Order Description Examples

O(1) Constant time key in dict, dict[key] = value, list.append(value)

O(ln n) Logarithmic time Binary search

O(n) Linear time value in list, str.join(list)

O(n ln n)  list.sort()

O(n2) Quadratic time Nested loops [for O(1) loop body]

Table 1: Python Algorithm Performance

01  def intersection1(list1, 
list2):

02      """Determine resulting set 
with O(n^2) algorithm."""

03      result = {}

04      for value in list1:

05          if value in list2:

06              result[value] = 
True

07      return result.keys()

Listing 3: intersection1

Figure 2: Dstat output for a process with a data transfer bottle-

neck (copying a CD).
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Also, think about restricting the cache 
size to keep the system from swapping 
memory out to disk and thus negating 
any speed benefits. In scenarios in 
which caching makes sense, the use of 
a database server will often give you a 
major performance boost.

If you store an object on disk or trans-
fer an object over the wire, you can ac-
celerate the operation by just storing the 
changes instead of the whole object. On 
the downside, this kind of optimization 
can affect class abstractions or other 
code. Try to keep the interface abstract, 
even if you are optimizing internally.

The following rules apply to line-by-
line text manipulation: if the files are 
short, it is typically easier, and faster, to 
read the text completely before going on 
to process the data. For longer files – log-
files are a typical example – it is better 
to read and process each line separately. 
Failure to do so could mean running out 
of memory, and continual swapping 
would freeze your system.

The choice of the right data structures 
is closely related to the choice of algo-
rithm. In fact, your choice of a data 
structure will implicitly influence your 
choice of data access algorithms. As 
demonstrated earlier on, searching for a 
key in a dictionary is far quicker than a 
linear search for the same value in a list.

The architecture of a software system 
also impacts performance. You can re-
gard the architecture as the algorithm 
that the whole system follows, and con-
sider it before you start developing.

Python Tricks
Python-specific optimizations have dif-
ferent effects depending on the Python 

version. A new Python version might 
even make a piece of code slower, al-
though this is an exception. The easiest 
way to optimize a Python script is to use 
the interpreter’s -O option to automati-
cally optimize the Python bytecode gen-
erated by the interpreter. Do not use 
from module import * in your scripts, 
which makes it impossible for the Py-
thon interpreter to perform some inter-
nal optimizations and also makes main-
tenance more difficult. Avoid lookup op-
erations across multiple name-spaces by 
binding an object directly to to the local 
name-space. For example, after the line 
opj = os.path.join, you can access the 
join function more quickly than opj. This 
kind of optimization affects the readabil-
ity of your code.

Avoid exec and eval. Python is flexible, 
so you should find a code variant that 
does not need these functions; in many 
cases, this practice actually improves 
readability. “In-lining” the function body 
can help to speed up code that executes 
functions with a short run time within 
loops, but this often leads to more 
redundancy and makes the software 
harder to maintain.

If you need to concatenate multiple 
strings, collect them in a list and join the 
list elements with "".join(list). This 
method is faster than using the + opera-
tor. The key argument in list.sort leads to 
faster code than the cmp argument.

C Helps
It might be better to use highly opti-
mized C code for some operations, but 
without sacrificing the benefits of Py-
thon. To do so, rewrite your code, or 
parts of it, to use Python’s internal func-
tions (e.g., range instead of a loop) or 
data types (lists, tuples, dictionaries, 
sets). Use C libraries for time-critical 
code; you can use the libxml2 library [5] 
to parse XML, and SWIG [6] and Ctypes 
[7] are useful for encapsulating existing 

C libraries. The latter became part of the 
standard distribution in Python 2.5.

PyInline [8] and Weave [9] give devel-
opers the ability to integrate C fragments 
into Python code. Pyrex [10], a language 
that is very similar to Python, lets devel-
opers encapsulate existing C libraries 
and define their own extensions (which 
are converted to C). The most flexible, 
but at the same time the most compli-
cated, approach is the Python/ C-API. As 
an alternative to basically just program-
ming in C, you might like to try Psyco 
[11], a just-in-time compiler for Python 
that, unfortunately, is only available for 
32-bit x86 systems.

Conclusions
Interpreted languages such as Python 
[12] are no hindrance to developing fast 
programs, but remember to test the pro-
gram’s speed and discover whether the 
program is fast enough for the intended 
application without optimization. If not, 
you should go on to find bottlenecks 
with the use of appropriate tools, and 
you should target your optimization ef-
forts. Modifying algorithms and data 
structures, or simply replacing hardware, 
promises the biggest time savings. 

Python-specific optimizations can also 
help. If possible, take the opportunity to 
use implicit C code in the form of Python 
code in the case of, for example, Python 
data structures or external C libraries. 
And always remember to keep maintain-
ability in mind whenever you optimize 
your software.  ■

01  def intersection2(list1, 
list2):

02      """Determine resulting set 
with O(n) algorithm."""

03      result = {}

04      dict2 = dict((value, True) 
for value in list2)

05      for value in list1:

06          if value in dict2:

07              result[value] = 
True

08      return result.keys()

Listing 4: intersection2

01  def intersection3(list1, 
list2):

02      """Determine resulting set 
with O(n) algorithm."""

03      return list(set(list1).
intersection(list2))

04  @KE

Listing 5: intersection3

[1]  Xosview: http:// sourceforge. net/ 
projects/ xosview/

[2]  Gkrellm: http:// www. gkrellm. net/

[3]  Dstat: http:// dag. wieers. com/ 
home-made/ dstat/

[4]  SQLite: http:// www. sqlite. org/

[5]  Libxml2: http:// xmlsoft. org/

[6]  SWIG: http:// www. swig. org/

[7]  Ctypes: http:// starship. python. net/ 
crew/ theller/ ctypes/

[8]  PyInline:  
http:// pyinline. sourceforge. net/

[9]  Weave: http:// www. scipy. org/ Weave

[10]  Pyrex: http:// www. cosc. canterbury. 
ac. nz/ greg. ewing/ python/ Pyrex/

[11]  Psyco: http:// psyco. sourceforge. net/

[12]  Python: http:// www. python. org/
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COVER STORYOptimizing Python

33ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M


