
30

Optimization saves execution
time. Unfortunately, optimizing
lengthens development cycles.

The optimized source code is typically
more complex than the original code,
which increases the time for testing and
debugging. Adding complexity also
makes the code more difficult to main-
tain. Because the optimization process
takes time and adds complexity, it is best
to avoid optimizing code while you are
writing it. Before you start optimizing,
start with a stable program. Once your

program is stable and complete, you can
look for ways to improve performance.
In this article, I describe some strategies
for optimizing Python programs.

Where to Optimize
From the developer’s perspective, a pro-
gram is never just slow or fast. Before
you start accelerating code sections, it is
important to discover exactly where the
bottlenecks occur. The first step is to
find out whether the CPU or I/ O system
is slowing down your software when a
specific function is executed. It does not
make sense to optimize the execution
time for an algorithm by a factor of 100,
only to discover that the hard disk or
network is to blame.

To find out if a slow CPU, a slow hard
disk, or some other hardware compo-
nent is causing the problem, you can use
a GUI-based tool such as Xosview [1] or
Gkrellm [2]. Also, tools such as Dstat [3]
give statistics for data transfers from and
to specific partitions. To achieve plausi-
ble results, you must make sure the com-
puter is not running any other processes
that could cause additional load. As an
alternative, top and ps give individual
process performance data.

Figures 1 and 2 show screenshots of
Gkrellm and Dstat for a process that is
limited by CPU or data-transfer perfor-

mance. The problem of data transfer is
more difficult to identify than a CPU bot-
tleneck because there is no hardware-
independent upper threshold.

The best way to determine threshold
values is to refer to hardware specifica-
tions or use benchmarks. Note that data
transfer can refer to a CD-ROM drive, as
in our example, but it can just as easily
refer to a network interface, a tape auto-
changer on a backup system, and so on.

If 100 percent CPU load is slowing
your program down, you will need to
identify the sections of code that are
causing the problem. The cProfile Py-
thon module can help you evaluate the
results returned by the Pstats module.

As a practical example showing a Py-
thon profiler at work, consider the Gen-
too Linux package management tool
Emerge, which is written in Python. A
search with emerge --search python takes
just 10 seconds to execute on my com-
puter. It wouldn’t make sense to start
optimizing this, unless you have a slow
computer, but this is an example of how
to approach the analysis phase.

Generating run-time statistics with Py-
thon’s cProfile module is a bit compli-
cated because the profiler's command-
line interface doesn't see the need to
pass in command-line parameters to the
program you are calling, which is why I

Optimizing Python scripts

RUNNING LEAN

>>> import cProfile

>>> import sys

>>> sys.argv.append("--search")

>>> sys.argv.append("python")

>>> f = open("/usr/bin/emerge")

>>> ef = f.read()

>>> f.close()

>>> cProfile.run(ef, "emerge.
stats")

Searching...

[Results for search key : python
]

[Applications found : 48]

...

Listing 1: cProfile

The trick to optimization is to

save time in the right places.

BY STEFAN SCHWARZER

Y
o
n

g
 H

ia
n

 L
im

, Foto
lia

Optimizing PythonCOVER STORY

30 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

31

used the interactive inter-
preter (Listing 1). After im-
porting the required Python
modules, and preparing the
parameters, I type cProfile.
run() to start the test run.
The Pstats module outputs
a table with the run-time
statistics (see Listing 2).

Although a genuine bot-
tleneck does not occur here,
you might optimize a cou-
ple of points. For example,
Emerge does take 1.2 sec-
onds of 9 to update the
progress indicator (update_
twirl method; you can see
this in the cumtime [cumu-
lative time] column in List-
ing 2). However, an Emerge
option can switch off this
display. About 1.2 seconds are used for
time-intensive deep copying. If deep
copies are not really needed, there is
some scope for savings.

To accelerate code with a CPU bottle-
neck, do things faster or do things less

often. If you replace your
own flat-file data manage-
ment system with a data-
base such as SQLite [4],
you can often achieve both
goals. Of course, the goal is
to achieve maximum, or at
least sufficient, speed bene-
fits with a minimum of de-
velopment effort. And you
still need to consider main-
tainability of the code.

Before you start measur-
ing the speed of your code,
you need to make sure the
code is as free of error as
humanly possible. If your
code has errors, the danger
is that you might be “opti-
mizing” code that only runs
slowly because it is buggy.

Automated tests, written with the doctest
and the unittest Python modules, can
help reduce errors when modifying code.

The next step is to start profiling to
find the most important code sections
for optimization. The best candidates for

optimization will typically be the sec-
tions with the highest total run time –
that is, sections in which the product of
the run time and the frequency of execu-
tion is particularly high. It normally
makes more sense to optimize a function
that executes 10,000 times and takes a
second per run than to optimize a func-
tion that runs just five times and takes
10 seconds. But you also should consider
the extent to which the program run
time affects the user experience. You
might discover that the program simply
seems to be lagging slightly in the first
case, whereas the second case imposes
a 10-second wait on the user.

Optimization Techniques
Replacing an algorithm with a more ef-
fective algorithm is one way to acceler-
ate a program. Whereas most optimiza-
tion techniques will speed up the code
by a factor of 10 percent at the most, re-
placing an algorithm can achieve speed
benefits of several hundred percent!

Big-O notation is used to describe the
complexity of an algorithm. The “O”

Figure 1: Gkrellm on

the left shows 100

percent CPU load for

a process with a CPU

bottleneck. The pro-

gram on the right shows

the data throughput

when copying a CD.

01 >>> import pstats

02 >>> s = pstats.Stats("emerge.stats")

03 >>> s.sort_stats('time')

04 <pstats.Stats instance at 0xb7d80eac>

05 >>> s.print_stats(10)

06 Sun Oct 1 23:12:36 2006 emerge.stats

07

08 602508 function calls (586701 primitive calls) in 9.052 CPU seconds

09

10 Ordered by: internal time

11 List reduced from 609 to 10 due to restriction <10>

12

13 ncalls tottime percall cumtime percall filename:lineno(function)

14 1240 1.022 0.001 1.022 0.001 {method 'readlines' of 'file' objects}

15 11387 0.849 0.000 0.849 0.000 {method 'flush' of 'file' objects}

16 1096 0.579 0.001 1.513 0.001 /usr/lib/portage/pym/portage.py:200(cacheddir)

17 14550/160 0.421 0.000 1.173 0.007 /home/schwa/python2.5/lib/python2.5/copy.py:144(deepcopy)

18 76352 0.359 0.000 0.359 0.000 {method 'append' of 'list' objects}

19 1 0.335 0.335 2.513 2.513 <string>:468(output)

20 66288/66173 0.316 0.000 0.317 0.000 {len}

21 11383 0.256 0.000 1.225 0.000 <string>:94(update_twirl)

22 36953 0.224 0.000 0.224 0.000 {method 'split' of 'str' objects}

Listing 2: Pstats

COVER STORYOptimizing Python

31ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

here stands for the “order” of the algo-
rithm. The expression in parentheses de-
scribes how the performance changes
with respect to a change in the data
input – the number of values in a list, or
a string length, for example. An O(n) al-
gorithm will take twice as long to handle
twice the volume of data, whereas an
O(n2) algorithm would take four times
as long for twice the volume of data.

Obviously, it is desirable for the ex-
pression in the parentheses to grow only
little, despite an increasing value for n.
Table 1 shows the performance for vari-
ous Python algorithms. The performance
decreases from top to bottom.

In multiply-nested loops, or for some
combinatorial problems, the perfor-
mance ratio can be greater than quad-
ratic. In this case, even small values of
n will lead to poor performance. If the
code causes a bottleneck, you should
look to avoid algorithms of more than
quadratic order for larger values of n.

If you are running an algorithm
against a smaller volume of data, a more
complex algorithm can be faster. With
some algorithms, the run time will only
increase slowly as n grows; however, a
longer preparatory step might be
needed. In this case, a “slower” algo-

rithm that avoids the
need for a prepara-
tory step could ulti-
mately be faster.

Comparing algo-
rithms on the basis
of their order is use-
ful in principle, but
the technique might
not be applicable in
the wild, at least not
for all possible vol-
umes of data. For
example, regardless
of the theoretical ef-
ficiency of an algo-
rithm, the perfor-
mance could be
drastically reduced if

the list you need to sort does not fit into
memory and the operating system has to
start swapping memory out to disk. Ef-
fects like this also come into play if the
memory management of the underlying
C standard library has a major influence
on the run time.

Optimized Set Intersection
Let’s look at another example. Each of
the Python functions I will be investigat-
ing finds the intersecting set of two lists
– list elements that occur in both lists –
and returns a new list with the results.

The first algorithm I use is of quadratic
complexity given two lists with n ele-
ments (Listing 3). The outer loop iterates
over all the elements in the first list, with
linear complexity. The loop contains a
second implicit loop, which is hidden in
the value in list2 test condition.

The search in list2 is linear, so I need
to consider the two occurrences of linear
complexity. The nesting of the explicit
outer loop and the implicit inner loop
makes this an O(n2) algorithm. Al-
though the determination of the keys in
the return instruction is linear, this is in-
significant compared with the quadratic
complexity of the previous algorithm
with respect to n. In general, it is prefer-

able to avoid nested loops. At best, this
will give you quadratic performance;
this said, optimization is probably not
worthwhile for smaller volumes of input.

The algorithm in Listing 4 is a modi-
fied version of the previous algorithm
with linear complexity. The code looks
like the previous listing, but it creates a
dictionary from the second list before en-
tering the outer loop and then uses the
dictionary in the loop.

value in dict2 shows constant perfor-
mance, so the bottom line results in a
linear outer loop. The last algorithm also
results in linear performance (Listing 5).
The operation that converts the first list
to a set is linear, as is the generation of
the resulting set by the intersection
method and the conversion of the result-
ing set to a list. Although the syntax for
these operations is nested, they actually
run sequentially. Three sequential linear
steps result in an O(n) algorithm.

Better Algorithms
The previous examples suggest a num-
ber of optimization rules you may know.
For example, operations whose results
do not change through multiple itera-
tions of a loop should be moved in front
of the loop, thus avoiding the need to ex-
ecute them in each iteration.

The principle of divide and conquer
might work fine with data. A well-
known example of this is a binary search
that requires presorted data but returns
the results with a complexity of O(ln n),
rather than O(n). However, if you are
handling a small volume of input data, a
trivial linear search will be just fine.

Instead of constantly reloading or re-
calculating, you can cache values. But
consider the consequences and possible
data inconsistency, especially on systems
that use multiple threads or transactions.

Order Description Examples

O(1) Constant time key in dict, dict[key] = value, list.append(value)

O(ln n) Logarithmic time Binary search

O(n) Linear time value in list, str.join(list)

O(n ln n) list.sort()

O(n2) Quadratic time Nested loops [for O(1) loop body]

Table 1: Python Algorithm Performance

01 def intersection1(list1,
list2):

02 """Determine resulting set
with O(n^2) algorithm."""

03 result = {}

04 for value in list1:

05 if value in list2:

06 result[value] =
True

07 return result.keys()

Listing 3: intersection1

Figure 2: Dstat output for a process with a data transfer bottle-

neck (copying a CD).

Optimizing PythonCOVER STORY

32 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

Also, think about restricting the cache
size to keep the system from swapping
memory out to disk and thus negating
any speed benefits. In scenarios in
which caching makes sense, the use of
a database server will often give you a
major performance boost.

If you store an object on disk or trans-
fer an object over the wire, you can ac-
celerate the operation by just storing the
changes instead of the whole object. On
the downside, this kind of optimization
can affect class abstractions or other
code. Try to keep the interface abstract,
even if you are optimizing internally.

The following rules apply to line-by-
line text manipulation: if the files are
short, it is typically easier, and faster, to
read the text completely before going on
to process the data. For longer files – log-
files are a typical example – it is better
to read and process each line separately.
Failure to do so could mean running out
of memory, and continual swapping
would freeze your system.

The choice of the right data structures
is closely related to the choice of algo-
rithm. In fact, your choice of a data
structure will implicitly influence your
choice of data access algorithms. As
demonstrated earlier on, searching for a
key in a dictionary is far quicker than a
linear search for the same value in a list.

The architecture of a software system
also impacts performance. You can re-
gard the architecture as the algorithm
that the whole system follows, and con-
sider it before you start developing.

Python Tricks
Python-specific optimizations have dif-
ferent effects depending on the Python

version. A new Python version might
even make a piece of code slower, al-
though this is an exception. The easiest
way to optimize a Python script is to use
the interpreter’s -O option to automati-
cally optimize the Python bytecode gen-
erated by the interpreter. Do not use
from module import * in your scripts,
which makes it impossible for the Py-
thon interpreter to perform some inter-
nal optimizations and also makes main-
tenance more difficult. Avoid lookup op-
erations across multiple name-spaces by
binding an object directly to to the local
name-space. For example, after the line
opj = os.path.join, you can access the
join function more quickly than opj. This
kind of optimization affects the readabil-
ity of your code.

Avoid exec and eval. Python is flexible,
so you should find a code variant that
does not need these functions; in many
cases, this practice actually improves
readability. “In-lining” the function body
can help to speed up code that executes
functions with a short run time within
loops, but this often leads to more
redundancy and makes the software
harder to maintain.

If you need to concatenate multiple
strings, collect them in a list and join the
list elements with "".join(list). This
method is faster than using the + opera-
tor. The key argument in list.sort leads to
faster code than the cmp argument.

C Helps
It might be better to use highly opti-
mized C code for some operations, but
without sacrificing the benefits of Py-
thon. To do so, rewrite your code, or
parts of it, to use Python’s internal func-
tions (e.g., range instead of a loop) or
data types (lists, tuples, dictionaries,
sets). Use C libraries for time-critical
code; you can use the libxml2 library [5]
to parse XML, and SWIG [6] and Ctypes
[7] are useful for encapsulating existing

C libraries. The latter became part of the
standard distribution in Python 2.5.

PyInline [8] and Weave [9] give devel-
opers the ability to integrate C fragments
into Python code. Pyrex [10], a language
that is very similar to Python, lets devel-
opers encapsulate existing C libraries
and define their own extensions (which
are converted to C). The most flexible,
but at the same time the most compli-
cated, approach is the Python/ C-API. As
an alternative to basically just program-
ming in C, you might like to try Psyco
[11], a just-in-time compiler for Python
that, unfortunately, is only available for
32-bit x86 systems.

Conclusions
Interpreted languages such as Python
[12] are no hindrance to developing fast
programs, but remember to test the pro-
gram’s speed and discover whether the
program is fast enough for the intended
application without optimization. If not,
you should go on to find bottlenecks
with the use of appropriate tools, and
you should target your optimization ef-
forts. Modifying algorithms and data
structures, or simply replacing hardware,
promises the biggest time savings.

Python-specific optimizations can also
help. If possible, take the opportunity to
use implicit C code in the form of Python
code in the case of, for example, Python
data structures or external C libraries.
And always remember to keep maintain-
ability in mind whenever you optimize
your software. ■

01 def intersection2(list1,
list2):

02 """Determine resulting set
with O(n) algorithm."""

03 result = {}

04 dict2 = dict((value, True)
for value in list2)

05 for value in list1:

06 if value in dict2:

07 result[value] =
True

08 return result.keys()

Listing 4: intersection2

01 def intersection3(list1,
list2):

02 """Determine resulting set
with O(n) algorithm."""

03 return list(set(list1).
intersection(list2))

04 @KE

Listing 5: intersection3

[1] Xosview: http:// sourceforge. net/
projects/ xosview/

[2] Gkrellm: http:// www. gkrellm. net/

[3] Dstat: http:// dag. wieers. com/
home-made/ dstat/

[4] SQLite: http:// www. sqlite. org/

[5] Libxml2: http:// xmlsoft. org/

[6] SWIG: http:// www. swig. org/

[7] Ctypes: http:// starship. python. net/
crew/ theller/ ctypes/

[8] PyInline:
http:// pyinline. sourceforge. net/

[9] Weave: http:// www. scipy. org/ Weave

[10] Pyrex: http:// www. cosc. canterbury.
ac. nz/ greg. ewing/ python/ Pyrex/

[11] Psyco: http:// psyco. sourceforge. net/

[12] Python: http:// www. python. org/

INFO

COVER STORYOptimizing Python

33ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

