
“password” or a pet’s name – even with
some additional characters – simply do
not provide a lot of entropy (random-
ness). Even if the password is salted,
you can still do pre-computation to cut
down on the search time when you do
want to crack a password. The idea is to
do a lot of work upfront so that later on
you can quickly retrieve passwords.

Some Numbers with
AES-256
If you are using AES-256 to hash and
store your passwords, you’re doing it
wrong (more on this in the next section).
But, a lot of people are using AES-256 or
SHA-256, and it makes for some impres-
sive numbers. Suppose you want to pre-
compute the hash values for all valid
characters on a US-English keyboard (26
letters, 10 numbers, 11 other character
keys for a total of 94 characters) up to a
password length of
eight characters
(so, 941 + 942 +
… + 947 + 948
possible pass-
words). Stor-
ing the input
and the
AES-256
value (ignor-
ing indexing
require-
ments) for
this would re-
sult in about
1,400,000TB of
data.

C
omputer performance has come
a long way in the past few
years. Moore’s law has contin-
ued moving forward; right now,

you can easily find a high-end CPU with
6 to 12 cores for between a few hundred
and a thousand dollars.

But what if you want to throw a cou-
ple hundred cores at a problem? You
could buy a rack or two of equipment, or
you could just spend a few hundred dol-
lars on a video card. In fact, graphics
cards are so good at certain types of
computation that both NVidia and AMD
now make specialized cards (the NVidia
Tesla series and the AMD FireStream se-
ries) that have a ton of cores, several gi-
gabytes of memory, and extremely fast
interconnects.

So, assuming you have a decent
graphics card (or are willing to buy one),
what can you do with a few hundred
cores? The most obvious answer is en-
cryption, which is embarrassingly easy
to parallelize and works very well on
GPU-based computing systems.

SSL Support
The good news is that enabling SSL on
most web servers won’t take more than

a few percentage points of CPU power.
The bad news is if you’re building a
front-end load balancer capable of pro-
viding SSL termination for, say, a few
thousand clients, you’re probably going
to need to buy a specialized SSL acceler-
ation card.

Or, you could use a graphics card to
provide more cores to handle key setup
and data [1]. However, little software is
available to provide support for this ap-
proach outside of a master’s thesis by
Urmas Rosenberg (University of Tartu in
Estonia) [2] and some associated code
that provides AES-128 block support for
OpenSSL on CUDA (NVidia-based)
cards.

Unfortunately, this is more theoretical
than practical right now, “The general
result is left as an exercise to the reader.”
In general, I think generic CPUs are get-
ting so many cores that the need to
throw a few hundred cores at this
problem will basically become less
important.

Password
Cracking
Rainbow tables provide a
very practical application
of GPU-based encryp-
tion computation for
something useful.
The general idea is
that people are
terrible at choos-
ing passwords.
Passwords like

Storing your passwords properly

 Security
 Blanket
High-performance graphics cards and proper storage can

help keep your passwords secure. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and
networks since 1996. He often won-
ders how it is that technology works
on a large scale but often fails on a
small scale.

 Kurt SEifriEd

46

Features
Security Lessons: Password Storage

November 2011 Issue 132 lINux-magazINe.com | lINuxpromagazINe.com

046-047_kurt.indd 46 9/13/11 3:59:17 PM

Although hard drive prices have
dropped, they haven’t dropped enough
to make this possible. But you can cheat
by precomputing a chain of values, start-
ing with a value of 1, for example, hash-
ing that, then hashing that result and re-
peating until you’ve done it 200,000
times.

You then store the end value of this
chain along with the starting value,
which means about 14TB of storage
(plus indexing requirements, etc.) – or,
less than US$ 1,000 in today’s hard
drives. When you have a hashed pass-
word that you want to crack, you com-
pare it to the stored values, if it matches,
you win; if not, you hash the hashed
password and look for that value.

In the worst case scenario, you have to
search around 200,000 times, but even-
tually you hash the hashed password
and end up with a value for which you
have a valid chain. Assuming you have
hashed the password and searched
50,000 times until you found a match,
you then take the starting value of that
chain and hash it 149,999 times to get a
value. This value, when hashed, will
match the password that you’re trying to
crack.

Why are MD5, AES-256, and SHA-256
such bad choices for storing your hashed
passwords? Because they are very fast
algorithms, especially on modern hard-
ware, and especially on modern GPUs.
The PostgreSQL project has posted some
numbers [3] – on a 1.5GHz Pentium 4,
you can do 2,345,086 MD5 hashes per
second. On a modern GPU, this in-
creases to hundreds of millions per sec-
ond. However, you don’t actually need
to make your own rainbow tables, you

can download them (and the soft-
ware used to create them)
from a number of free
sources [4] [5]. Two main
methods are used to defend
against rainbow tables:
The first is salting, and
the second is using en-
cryption and hash func-
tions, like bcrypt, de-
signed for password
storage.

Salting
Passwords

Salting passwords primar-
ily defends against situa-

tions in which the attacker obtains the
encrypted or hashed password (e.g., by
stealing the /etc/shadow file or down-
loading the database) to brute force it.
The salt ensures that a pre-computed
brute-force attack will take longer be-
cause each password must be encrypted
with all possible salt values first.

Some significant weaknesses are in-
herent with salting, however. The first is
that it won’t really help against badly
constructed passwords: Attackers can
easily brute-force a list of the million
most common passwords even if proper
salting is used.

The second issue is that most systems
don’t care about the password, they care
whether the encrypted or hashed value
of the password matches the system
entry. Because hash functions like AES-
256 only provide 2256 possible unique
outputs, collisions are obviously possi-
ble. Ultimately, the attacker wants to
find a data string that will encrypt or
hash to the same value as the stored
one. And, by brute-forcing chains of pos-
sible values, chances are the attacker
can find a value that works.

Password Storage
The ugly truth is that most encryption
and hash functions are designed to pro-
vide encryption and hashing, not secure
password storage. However, the bcrypt
tool [6] is designed just for password
storage. Basically, it uses the Blowfish
encryption algorithm to hash data but
introduces a work function that deter-
mines how much work it will take to
hash the data.

By setting a large value for the work
function, you can make bcrypt take an
arbitrarily large amount of CPU time
(say 0.1 seconds on a modern system) to
encrypt the password. This can obvi-
ously affect system performance (e.g., if
you have 10 users logging in every sec-
ond, all the CPU time would be con-
sumed by bcrypt).

The advantage of bcrypt is that, as
time goes on, you can increase the work
function, defeating attackers in the fu-
ture (assuming they didn’t steal the
password file 10 years ago). You might
think a similar outcome could be
achieved by using multiple rounds of
MD5 or AES, but that would actually
make the system easier to attack. For ex-
ample, using 1,000 rounds of MD5 gives

the attacker 1,000 possible values, which
when MD5’ed 1,000 times will result in
a password stored in their rainbow table.
So, please don’t do that.

A Note on Software
Of course, none of this matters if the
software you are using doesn’t work
properly. A perfect example is the release
of PHP version 5.3.7, which contained a
critical security bug. A small change (to
avoid a warning) was made to the
crypt() function when using the MD5 al-
gorithm (the default).

The result of this small change was
that, instead of passing back the salt
value and the password, crypt() concat-
enated the password to the salt (essen-
tially making a large salt value with no
password). Thus, if anyone else tries to
login, only the salt values will be com-
pared. The values will of course match,
thus allowing the bad guy in. So, I guess
the moral of the story is to run your unit
tests when you make changes to crypto-
graphic functions.

Conclusion
Brute-forcing older algorithms is defi-
nitely possible now (DES and 3DES al-
ready fell to brute-force attacks several
years ago). The latest algorithms like
AES and SHA are good, but, ironically,
one of their biggest strengths, their
speed, also works against them. So,
choosing something slower like bcrypt
might be a good idea.

Finally, it doesn’t matter how you en-
crypt passwords if you allow users to
pick weak passwords (especially words
listed in dictionaries). You might want to
download a few dictionaries and check
against them when a user attempts to set
or change a password. nnn

[1] Accelerating SSL with GPUs:
http:// www. ndsl. kaist. edu/ papers/
 comm022t. pdf

[2] OpenSSL-GPU:
http:// labs. sasslantis. ee/ openssl‑gpu/

[3] pgcrypto: http:// www. postgresql. org/
 docs/ 8. 3/ static/ pgcrypto. html

[4] Free Rainbow Tables: http:// www.
 freerainbowtables. com/

[5] RainbowCrack Project:
http:// project‑rainbowcrack. com/

[6] bcrypt: http:// bcrypt. sourceforge. net/

 iNfo

Features
Security Lessons: Password Storage

47lINux-magazINe.com | lINuxpromagazINe.com Issue 132 November 2011

046-047_kurt.indd 47 9/13/11 3:59:18 PM

