
Logging Early Crashes
Ahmed S. Darwish was getting system crashes
so early in the boot process that no logging in-
formation had time to be saved. He didn’t like
this, so he wrote a patch that would rely on
low-level BIOS routines to store logging infor-
mation to disk, even if the system crashed near
the very start of the boot process.

Ingo Molnár replied, “I have to admit that
while I’m a rabid BIOS-hater, I find this debug
feature very very interesting, for the plain rea-
son that if it’s implemented in a robust and
clever way then this has a chance to improve
debuggability of pretty much any Linux laptop
quite enormously!”

Ingo’s primary concern with Ahmed’s code,
was to make sure there was absolutely no
chance that it might corrupt any real data. As a
secondary concern, he hoped it would be pos-
sible to find an unused part of the disk to store
these logs, so it wouldn’t be necessary for
users to do a complete reinstall to take advan-
tage of the feature.

Tejun Heo was highly skeptical that any such
features could work reliably – although he ac-
knowledged that stranger things had happened
in kernel land. And H. Peter Anvin felt that try-
ing to prevent the BIOS from trashing user data
would be an extremely hard problem.

At one point, Linus Torvalds intervened in
the discussion to say, “Over the years, many
people have tried to write things to disk on
oops. I refuse to take it. No way in hell do I
want the situation of ‘the system is screwed, so
let’s overwrite the disk’ to be something the
kernel I release might do. It’s crazy. That disk
is a lot more important than the kernel, and
overwriting it when we might have serious
memory corruption issues or something is not
a thing I feel is appropriate.”

Folks continued discussing the technical ob-
stacles, and how to overcome them, but Linus
seemed pretty definite on the point. This kind
of code will not go into the kernel.

Too Many Clocks?
Jeremy Kerr bemoaned the existence of more
than 20 distinct implementations of the clock
structure in the ARM architecture. He proposed
some code that would unify all of these into a
single implementation and presumably let
folks write architecture-independent code
without worrying about making the wrong as-

The Linux kernel mailing list
comprises the core of Linux
development activities.
Traffic volumes are immense,
often reaching 10,000
messages in a week, and
keeping up to date with the
entire scope of development
is a virtually impossible task
for one person. One of the
few brave souls to take on
this task is Zack Brown.

 Zack Brown

Zack's Kernel News
Chronicler Zack

Brown reports on

the latest news,

views, dilemmas,

and developments

within the Linux

kernel community.

By Zack Brown

sumptions about struct clk. His goal was to
share the clock code among the various hard-
ware platforms, while allowing folks to create
clock devices dynamically in a platform-inde-
pendent way.

Several folks offered some technical sug-
gestions. Apparently, various tests and error
conditions were a bit tricky to avoid, such as
the proper way to detect when two devices
were using the same clock. It was also impor-
tant to make sure that generic clock features
didn’t try to do too much and get in the way
of architecture-specific special handling re-
quirements.

The code looks as if it is destined to be in-
cluded in the official kernel. Although regular
users will probably not notice this feature at
all, it will simply make it easier for kernel de-
velopers to do more and better stuff with the
kernel.

Generic IRQ Revamp
Thomas Gleixner submitted a big overhaul of
the generic interrupt code. He fixed up the
namespace to have less confusing accessor
functions. He also did a pile of work encapsu-
lating the code, so that not as much of the
guts of the generic interrupt handler code is
exposed.

Specifically, by further encapsulating the
code, he made it much easier to detect when
other folks’ code was reaching too far into the
IRQ code. This would at least force people to
discuss their special requirements with him,
instead of doing what they had been doing,
which was just to reach into the code in odd
and hard-to-detect ways. Using his new infra-
structure, it should be possible to enhance
the IRQ code gradually in a regular way to
meet the needs of all comers.

Sam Ravnborg suggested documenting ex-
actly what Thomas expected from anyone
using the code, so they wouldn’t end up try-
ing to do the wrong thing, seeing compiler
warnings, and perhaps having to have the sit-
uation explained to them.

There was also some concern over the size
of Thomas’ patches. He had billed the
changes as just fixes, but Linus Torvalds no-
ticed that a lot of new code was going in as
well. Thomas explained that much of this
was just transitional code to prevent breakage
and would ultimately go away.

May 2011 Issue 126 lInux-MagazIne.coM | lInuxproMagazIne.coM 94

Community Notebook
Kernel News

094-095_kernel-news.indd 94 16.03.2011 11:22:30 Uhr

Limiting Global Capabilities
Eric Paris bemoaned the decision to remove the global capability bounding set from
the kernel. The decision to replace it with a per-task bounding set that would be in-
herited by the children, was fine, he said, as long as you want to trust the parent pro-
cess to make the proper choices. But, with the absence of a global capability bound-
ing set, there was no way to enforce the removal of a particular capability from the
system as a whole.

He had tried various clever solutions to this problem, such as dropping the un-
wanted capability by the init process before any other process had run. With this ap-
proach, all new processes would be children of init, and there would be no problem.
But, a way around this technique was for a user to cause the kernel to try to autoload
a module, at which point the kernel would produce a process that could have all ca-
pabilities enabled.

After much thought, Eric decided there was no way to do what he wanted within
the existing infrastructure, so he posted a patch to reintroduce the global capability
bounding set. In fact, his new version was more extreme, because not even init could
reintroduce a capability that had been excluded by this new bounding set. Once a ca-
pability is dropped by the system, it never comes back. Only certain kernel threads
might still have that capability, but they would not be able to pass that capability
along to their children.

Various folks suggested existing security solutions, such as LSM and SELinux, as
alternatives, but that can of worms was not fully opened in this discussion.

Serge E. Hallyn had a technical objection, pointing out that Eric’s code actually
changed the manner in which capabilities were inherited by processes. Eric
agreed that this was a problem and said he would work to match the previous
behavior but retain the global bounding feature.

Meanwhile, Andrew G. Morgan also objected to Eric’s patch, saying that if
a running system could simply drop capabilities out from under processes
that might be using them, it could cause odd problems. Eric replied
that he wasn’t going to drop capabilities from processes that had
them already, only from newly created processes.

In particular, Eric said, he wanted to boot the system, drop CAP_
SYS_MODULE and CAP_SYS_RAWIO, and then hand root-level privi-
leges to an untrusted user. That was the primary goal of his
submission.

Steve Grub pointed out that Eric’s idea was actually some-
what different from the normal threat model that Linux de-
velopers consider. The assumption, Steve said, is that once
a user gains root, he can do anything he wants to the sys-
tem. So, the focus of any security system is rather to pre-
vent a user from gaining root in the first place. The idea of
handing root privileges over to a user and then expecting to
be able to control what happens after that point is not an
approach taken by most folks working on Linux security is-
sues.

The discussion then veered off into a consideration of vir-
tualization, in which a user has root on a virtual machine and
might want to attack another virtual machine elsewhere on the same
physical system. So, it seems as though whatever Eric originally had
in mind, the ultimate behavior might end up quite different from
his implementation. But, at least he has piqued the interest of a
number of kernel folks in doing something related to his original
suggestion. nnn

Community Notebook
Kernel News

95lInux-MagazIne.coM | lInuxproMagazIne.coM

094-095_kernel-news.indd 95 16.03.2011 11:22:36 Uhr

