
censing of software, along with the pur-
chase and shipping of hardware devices
to customers. Several OpenID providers
support two-factor authentication, allow-
ing you to piggyback on their systems.
With this approach, you can reduce the
amount of sensitive information you
have to store and manage. Also, an SQL
injection attack against your authentica-
tion service is much less problematic
when there are no password hashes to
steal and crack offline.

Also, you can keep your own iden-
tity management and checks inter-
nally. For example, you can allow users
to use an OpenID to log in and then
map that to an internal account with
their real name and so on. Outsourcing
authentication management doesn’t
mean you have to give up your own in-
ternal checks and balances.

Disadvantages of
Outsourcing
Authentication
A major disadvantage of out-
sourcing authentication
is that you lose con-
trol of the back end.
A provider might
be using a weak
hash function to
store pass-
words (e.g.,
MD5) or

L
ast month, I talked about password
management for users. But what
can server and system administra-
tors really do to make life easier for

users and themselves? One obvious solu-
tion to username and password prolifer-
ation is to somehow allow a single ac-
count access to multiple services. Tradi-
tionally, this process was done with fed-
erated login services, such as LDAP, Ker-
beros [1], and so on. This approach
works well for specific organizations,
but it’s unlikely that sites will grant ran-
dom people the ability to create and use
accounts.

OpenID
OpenID was covered in an excellent arti-
cle [2] back in 2008, and since then has
gained widespread adoption. At this
point, OpenID looks like the only real
game in town for providing distributed
authentication, but, since 2008, much
has changed. For one thing, support is
much better and is included by default
in many Linux distributions, and OpenID
has benefited from several years of oper-
ational use.

Advantages of
Outsourcing
Authentication
One of the biggest advantages of out-
sourcing authentication is you can pick a
provider who can offer services that you
cannot. Two-factor authentication, for
example, requires additional servers, li-

might have other problems (e.g., SQL in-
jection vulnerabilities) within their site.
One example is a classic timing attack
found in one version of an OpenID li-
brary.

By using this attack, an attacker could
guess passwords one letter a time, check-
ing the first character for a to z, A to Z,
etc. and then moving on to the second
character. Thus, even a 20-character pass-
word would only take a few thousand
guesses (rather than 100 to the power of
20 assuming a-z, A-Z, 0-9, etc.). Libraries
for older protocols, such as LDAP and
Kerberos, have generally corrected such
problems, thus leaving fewer unknowns
than newer protocols like OpenID. An-
other problem with external authentica-

Features
Security Lessons: OpenID

FEBRUary 2011	 Issue 123	 linux-magazine.com | Linuxpromagazine.com	64

User authentication for the masses

Access Granted
Outsourcing authentication services gives you access to more

services – at a price. Kurt examines the pros and cons of dis-

tributed authentication. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt Seifried

064-065_kurt.indd 64 14.12.2010 13:17:40 Uhr

tion sources is establishing a secure path
from you to them. Some OpenID provid-
ers do not use HTTPS, so the initial re-
quest may be susceptible to a man-in-the-
middle attack (although built-in protec-
tions can help).

This need for external authentication
also means that your web servers will
need to make outgoing web requests to
other sites. Thus, you’ll need to poke
outgoing holes in your firewall, and you
might want to either proxy outgoing web
traffic (so you can log it) or use an IDS
system to spot outgoing attacks.

What’s in a
Name?
Another issue with
distributed authentica-
tion systems like OpenID concerns the
shared namespace. For example, the
kurtseifried at WordPress is me, but the
kurtseifried at Yahoo! is not me. So,
when you use OpenID account names,
you must also use the provider portion
of the name or you could end up with
collisions.

Alternatively, you can use the OpenID
account for authentication purposes and
then map it to a local account. This ap-
proach has the added benefit of not let-
ting an attacker insert strange characters
into the username or domain part of the
account name, which could cause prob-
lems for you later (e.g., SQL injection at-
tacks or buffer overflows).

Plugging In OpenID
So, how do you actually plug OpenID
into an existing web application? Media
Wiki is a great example, because you
often want to require people to log in be-
fore they can edit documents to mini-
mize vandalism or simply to track who
changed what. To begin, you’ll need
OpenID support for PHP (the language

in which MediaWiki and most of its ex-
tensions are written). To do so, you can
use “OpenID Enabled” [3], which you
can find as a package in Debian, Fedora,
and several other mainstream Linux dis-
tributions, or you can get the source and
install it yourself. Note that under Fe-
dora, the package is called php-pear-
Auth-OpenID.noarch and was broken at
the time of writing.

Once the package is installed, you will
need the MediaWiki OpenID [4] exten-
sion, which is also available as a pack-
age on Debian, Fedora (called media

wiki-openid.no-
arch, also broken
as of this writing),
and so on. En-
abling the Medi-

aWiki extension is trivial; just insert the
following include line into your Local-
Settings.php:

require_once("extensions/OpenID/ U

 OpenID.setup.php");

Then, you can create another table
(using the openid_table.sql SQL script)
in the MediaWiki database, which will
be used to map OpenID accounts to local
usernames. Note that not all OpenID
usernames are compatible with Media
Wiki’s account requirements. Then you
can click on the link to log in and set
your local MediaWiki username.

Widespread support exists for OpenID
in other programming languages; see the
references at the end of this article for a
list of libraries [5].

Providing OpenID
Services
Using OpenID is easy enough, but what
if you want to provide OpenID services
so your users can take advantage of hav-
ing a single account for multiple ser-

vices? Several hosting providers, such as
Google, now provide OpenID support for
business and education users, but, sadly,
not for the free version of Google Apps
for domains. If you have a Yahoo! ac-
count, you can go to http://openid.
yahoo.com/ to enable your account for
OpenID usage. (Your best bet is to plug
your provider’s name +OpenID into
Google.) If you want to set up your own
OpenID server, you won’t be spoiled for
choice [6].

OAuth and PAPE
You might not have heard of OAuth [7]
or PAPE [8] yet – neither had I. OAuth
provides an interface layer between
OpenID and actual authentication for
services. Thus, you can, for example,
give access to photos hosted on a shar-
ing site in a protected location without
having to hand out your username and
password to the application. Basically,
OAuth provides an easy way to interact
with OpenID servers that should be al-
most transparent to users.

PAPE is the OpenID Provider Authenti-
cation Policy Extension, which is a fancy
way of saying that a site using OpenID
also can set rules like “only allow
OpenID accounts that have two-factor
authentication using a physical token.”
This capability reduces the chances that
a compromised account will be able to
access your service. See “A Note on Pass-
word Cracking.” nnn

[1]	� “Taming the Dogs of Hell” by Walter
Neu, Linux Magazine, Issue 96, pg 28

[2]	� “ID Check” by Nils Magnus, Linux
Magazine, Issue 96, pg 35

[3]	� OpenID Enabled: http://​www.​janrain.​
com/​openid‑enabled

[4]	� MediaWiki OpenID extension:
http://​www.​mediawiki.​org/​wiki/​
Extension:OpenID

[5]	� OpenID libraries: http://​wiki.​openid.​
net/​w/​page/​12995176/​Libraries

[6]	� Run your own identity server: http://​
wiki.​openid.​net/​w/​page/​12995226/​
Run‑your‑own‑identity‑server

[7]	� OAuth: http://​oauth.​net/

[8]	� PAPE: http://​openid.​net/​specs/​openid
‑provider‑authentication‑policy‑ex‑
tension‑1_0.​html

[9]	� Reverse MD5 hash lookup:
http://​tools.​benramsey.​com/​md5/

 Info

As a matter of policy, most sites now hash
passwords using a one-way function;
thus, if an attacker steals the password
file, he won’t easily figure out the pass-
words.

This theory, however, has a couple of
wrinkles: GPUs and cheap storage. GPUs
like NVidia’s Tesla (to which you can now
rent access on Amazon EC2) have several
hundred cores that, although not great for
general-purpose computing, are ideal for

highly parallelizable tasks like password
cracking. If you add cheap storage to that
mix, the attacker can now generate huge
lists of encrypted passwords. Multiple on-
line MD5 lookup sites [9] allow you to
enter an MD5 hash, wait a few seconds,
and receive an input that will create that
hash.

So, when choosing a hashing algorithm,
remember that older ones (like MD5) and
fast ones (like SHA1) are less than ideal.

 A Note on Password Cracking

Figure 1: The MediaWiki OpenID login

link.

Features
Security Lessons: OpenID

linux-magazine.com | Linuxpromagazine.com	 Issue 123	 FEBRuary 2011 65

064-065_kurt.indd 65 14.12.2010 13:17:40 Uhr

