
with gzip or bzip2) do not directly sup-
port signatures, the most common way
to sign them is to create an external sig-
nature that is then provided alongside
the source code (most commonly with
the same file name but with a .asc or .
sign extension). Simply download the
files [2] and run the following com-
mand:

gpg ‑‑verify U

 patch‑2.6.8.1.gz.sign patch‑2.6.8.1.gz

This command most likely will result in
the error message

gpg: Can't check signature: U

 public key not found

with the key ID listed. As mentioned be-
fore, none of this will work unless you
have the public key. So, how do you get
the public key? With any luck, it will
be registered with PGP’s key server,
and you can retrieve it directly:

gpg ‑‑keyserver U

 wwwkeys.pgp.net

 ‑‑recv‑keys 0x517D0F0E

If this doesn’t work,
your best bet is to
use Google to look
for search terms
like “Begin PGP
public key block”
and the key ID.
Hopefully, you will
find the key listed
on the project or main-

tainer’s website (and in a perfect world,
they will provide it on an SSL-encrypted
website so you know you’re not being
given a fake site or key by a man-in-the-
middle attack).

Once you have imported the key, you
will most likely need to edit the trust
level assigned to it. Unless the key you
just imported happens to be signed by
someone you trust, chances are you will
need to assign a trust level manually to
the new key. For example, to modify the
trust level of the key used to sign Linux
kernels, use:

gpg ‑‑edit‑key 0x517D0F0E

Command> trust

... [output about trust levels]

Command>4

Signed, sealed, and delivered

Verifiable
How to avoid malicious code on Linux. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt Seifried

A
lthough it doesn’t happen often,
occasionally, an attacker breaks
in to a server and manages to
modify source code or binary

packages that people install on their ma-
chines. This happened recently, well ac-
tually not that recently, when an attacker
broke in and replaced the file Unreal3. 2.
8. 1.tar.gz with one that contains a
back door in the DEBUG3_DOLOG_SYSTEM
macro [1]. Unfortunately, that attack
happened in November 2009, and it
wasn’t until June 2010 that the problem
was detected, apparently because some-
one compared the MD5 sum of the file to
the original and found they weren’t the
same. But why wasn’t it detected earlier?

Classic Public/ Private
Key Cryptography
Using private/ public key cryptography,
you can easily create a private and pub-
lic key pair and then use the private key
to create signatures that other people
can verify using the public key. This
method is better than relying only on
published hash values of the files, be-
cause cryptographic signatures easily
can be checked and verified in an auto-
mated manner (which will result in
much earlier detection of a problem) and
because it only requires the user to have
the public key (as opposed to having to
hunt for an email announcement or web
page). The good news is that a lot of
people are now signing their software re-
leases, binary packages, and so on; how-
ever, the bad news is that not everyone
does this yet (UnrealIRCd does now that
they have been bitten). So, assuming the
software you want to use is signed, how
do you verify the signature to ensure it’s
okay?

Verifying Signatures
GnuPG
Because the most common archive for-
mats (TAR files that are then compressed

Features
Security Lessons: Checking Signatures

September 2010 ISSue 118 lInux-magazIne.com | lInuxpromagazIne.com 44

In my case, I chose to assign a trust level
of 4 (I trust fully) because the key is
widely known, and I was able to get it
from the PGP key server and verify it
from the kernel.org website. However,
even a key as popular and as widely
used as this one (which signs all source
code releases, patch files, etc. for the
Linux kernel) comes back with only
1,310 Google results, so chances are that
lesser known keys won’t be easy to find.
This makes it critical for people to get
their keys signed by other trusted and
well-known keys.

Once you have done all this,
you will now be able to check
and verify Linux kernel source
code releases for as long as they
sign them with this key (which
has no expiry date, so it could be
in use for long time).

rPM
Disclaimer: RPM is my preferred
package format for a number of reasons,
one of which is the simplicity of signing
and verifying signatures. RPM uses
GnuPG to handle the signing and verifi-
cation of packages, which is smart, be-
cause rolling your own cryptographic
systems is almost always a good way to
make a mess.

If you simply run rpm with the ‑K op-
tion, it will tell you whether the signa-
ture is valid. To import a GnuPG key,
run:

rpm ‑‑import somekey.gpg

Typically, the first time you run yum you
will be prompted to install the vendor
key (which ships on the installation
media), and all future package checks
will happen automatically. Any failed
packages will not be allowed to install,
so this allows you to automate system
updates safely and use shared resources
(such as a publicly writable NFS server)
to share the RPM update packages. If
an attacker modifies a package, the sig-
nature check will fail and the package
won’t be installed (assuming, of
course, you leave the default
gpgcheck=1 in yum.conf). Like a Ronco
rotisserie, you “set it and forget it!”

dpkg
Now I come to a rather strange beast:
dpkg. For a long time, dpkg has sup-

ported package
signing with a set
of external tools
(debsigs and deb‑
sig‑verify) and
not within the de-
fault dpkg tools
typically. But
many dpkg-based
Linux distribu-
tions (most nota-
bly Debian) do not use dpkg signatures
for distributing files securely. What De-
bian does in fact do is require developers

to sign their packages with their private
key (i.e., some-guy@debian.org).

Once the package is uploaded to Debi-
an’s servers, the signature is checked; if
it passes, it is stripped. Information
about the package (e.g., the file size, file
name, and MD5 and SHA1 signatures) is
then written to a file called Packages and
the MD5, SHA1, and SHA256 sum of the
Packages file is written to the Release
file. The Release file in turn has an ex-
ternal GnuPG signature placed in the file
Release.gpg, and all these files are
posted to the Debian servers, from
which they are then mirrored and made
available for download (Figure 1).

Verifying Signatures
with Apt
Here is where Apt comes in. The apt-get
binary downloads the Package, Release,
and Release.gpg files; checks the signa-
ture on the Release file (with the same
procedure used to check a GnuPG signa-
ture); and, if correct, verifies the MD5,
SHA1, and SHA256 values for the Pack‑
age file, which in turn holds dpkg pack-
age information (e.g., file name, size,
and MD5 and SHA1 sums).

If this information matches, the dpkg
is fine, and it can be installed safely. If
the information doesn’t match, apt-get
will not install the files (unless you force
it to using the ‑‑allow‑unauthenticated
option, which you really, really

shouldn’t do) [3].

unsigned files
Back in the old days, I would have
said you should simply download
unsigned files or packages from a
few different mirror sites, compare
them, then do the installation if
they matched. However, with at-
tackers now breaking into head dis-
tribution sites (e.g., UnrealIRCd),
even if you download the file se-
curely from a “trusted” site over an

encrypted channel such as HTTPS, you
can’t be certain that you are safe.

In such a case as this, I would recom-
mend using Google to search for an an-
nouncement of the version (plug in the
file name and phrases like “latest re-
lease” or “bugs fixed in this version”)
and hope that they include an MD5 or
similar hash of the file (fortunately, as
UnrealIRCd did).

Assuming you can find such a mes-
sage from a reputable source (i.e., an an-
nouncement mailing list archived at a
site like GMAME or MARC), you can be
reasonably sure you have a legitimate
copy of the software. However, I also
urge you to email the author or project
and ask that they sign their releases. The
more projects that do this, the harder it
is for attackers to modify packages and
go unnoticed, which is good for every-
one.

Oh, and if you want to sign dpkg files,
check out dpkg‑sig. nnn

[1] UnrealIRCd: http:// forums. unrealircd.
 com/ viewtopic. php? t=6566

[2] GnuPG – making and verifying signa-
tures: http:// www. gnupg. org/ gph/ en/
 manual/ x135. html

[3] Using the GPG signature checking
with Apt 0.6: http:// www.
 debian‑administration. org/ articles/ 174

 info

Figure 1: This shows the package info for the GnuPG dpkg.

“The good news: a lot
of people are now

signing their software
releases.”

Features
Security Lessons: Checking Signatures

lInux-magazIne.com | lInuxpromagazIne.com ISSue 118 September 2010 45

