
S
ome discussions evoke passion in the FOSS
world, such as Free Software vs. Open Source,
Gnome vs. KDE, BSD vs. Linux, and MySQL vs.
PostgreSQL. But one discussion has gone on for

at least 30 years: Emacs vs. Vi.
As far as I am concerned, the discussion ended a long

time ago. I just say they are both great text editors, and
you should use whichever one you want to use. But
when this email from the SAGE mailing list (Usenix spe-
cial interest group for sys admins) showed up,

Subject: [SAGE] EMACS sucks
Since we’re on the topics of load balance appliances

and UTC time - I just wanted to say that vi rules and
EMACS sucks.

That is all.

I was suckered into reading the thread. (I have purposely
left the author anonymous to save them some grief.) In-
terestingly, the thread did not turn into the typical flame
war of Emacs vs. Vi(m). The “graybeards” of SAGE, hav-
ing been in computing a long time, instead turned it into
a trip down memory lane of all the text editors they had
used over the years, recalling the fondness they had for
each one.

Although ed(1) was the first line-oriented text editor I
used on Unix, it was not the first text editor I ever used.
That honor belonged to a “dot editor” on the PDP-8. The
four thousand 12-bit words of memory in the PDP-8 had
to hold not only your application, but all of your data, so
that first text editor was very, very simple.

Another reason the text editor was simple was because
the user was typically on a very slow (5cps) paper-ori-
ented terminal (e.g., an ASR-33), and the paper was ex-
pensive for a college student. Given the slowness and
the cost, the editor would not print out anything until
you told it to print. You had to keep in your head where
you were in the file and just print every once in a while
to make sure you really were where you thought you
were.

People on the SAGE mailing list rapidly discussed
many text editors: joe, nano, xedit (with REXX as its
macro language), elvis, stevie, EDIT/ EDT, EDIT/ TPU,
EVE/ TPU, and others. Then I mentioned the “killer”:
TECO.

After that, the conversation deteriorated into people
talking about how they did not really use text editors,
but instead used the command string

cat > filename.txt

to create their files; others talked about using

cat >/vmlinux

to patch the kernel (somewhat in jest).
At times, no text editor was available, and the system

would not come up without a specific file in place, usu-
ally a configuration file. People who knew what that file
should contain might create it with the cat(1) command.
Been there, done that.

However, what sparked this column was not just the
stories about old text editors but thinking about how
long some programs have been in existence and how
they have morphed into something that is still useful in
this age of modern-day computing. A lot of these early
editors and programs were the beneficiaries of an ex-
change of ideas that made them even better.

TeX, a typesetting system first released in 1978, still
exists; it has migrated up to version 3.x but has also
spun off many front ends (LaTeX, KbibTeX, LyX, to name
a few) that make TeX easier to use while extending its
life and usefulness. TeX is still considered a premier
typesetting program for books, particularly on technical
subjects such as mathematics.

Even in the world of digital multimedia, some rather
ancient design elements come into play. Command-line
programs often do the majority of the work,
whereas the GUI leads the user through a pro-
cess that allows them to choose the right ar-
guments for the command.

Another good example of this is nmh(1) –
new MH message system. mh(1) was a set
of programs for the command line that im-
plemented the Rand MH mail system. I read
mail for years with the mh set of command-
line programs, then I started using xmh, a
graphical front end for mh. Xmh, con-
verted to use Motif, mxmh, was even-
tually changed to exmh with the in-
corporation of MIME and a series
of other “modern” additions.
mh-e allows mh to integrate
with Emacs, as does almost
everything else in the world.

I love this aspect of FOSS, in
which features from one pro-
gram are incorporated
into another, extending
the life of many fine
programs. ■■■

Old Dogs, New Tricks
maddog reminds us of some old school programs that are still alive and kicking on modern

systems. By Jon “maddog” Hall

Community Notebook
Doghouse: Old Is New Again

87LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM ISSUE 118 SEPTEMBER 2010

