
Creating plasmoids with JavaScript

Plasma, Baby
With KDE 4.4, plasmoids can now be written in JavaScript or

QtScript, thus opening up a whole new class of applications.

Marcel shows how easy it is to build JavaScript plasmoids.

By Marcel Gagné

A
s a non-programmer, I have an insane amount of respect for
programmers. Part of it is because I’m married to a
programmer (insert appropriate smiley here), but
part of it is because they seem to have this su-

perhuman ability to understand strange languages and
turn them into things I either need or want to have.
Programmers and coders, specifically those who cre-
ate free and open source software, are responsible
for the amazing Linux system I am using to write
this. So, my thanks to you all.

Tens of thousands of programs and packages
are available for Linux, and, granted, I use rel-
atively few of these. Given the sheer number
of men and women out there who toil
away at coding, you would think that the
odds would be pretty good that anything
you or I might want already exists. Of course,
that isn’t true, and that’s why somebody is al-
ways coming up with cool new stuff. Bigger
doesn’t always translate into better, however, and
therein lies the big secret. An application does not
have to be huge and complex to be useful, which is
why KDE widgets, or plasmoids, are so much more
than just desktop eye candy. They’re a peek into the
very future of computing, a future you can take part in.

Even if you code like me.

Plasmoids
But don’t just stop at the desktop. With KDE 4.4, plasmoids [1] can now
be written in JavaScript [2], or QtScript if you prefer, thereby opening the door to a
whole new class of applications. And devices.

Back in Issue 114 of Linux Magazine, Johan Thelin demonstrated the framework
for building KDE plasmoids in C++, which is fine for superhuman programmers, but
for people with only a modicum of programming ability, learning C++ seems a bit
beyond reach. That said, even casual non-programmers like myself write the occa-
sional shell script and dabble in simple coding languages like JavaScript.

The beauty of JavaScript is that it is easy to write, is safe to execute, and can be run
anywhere. Take note of that word, “anywhere.” This sits at the heart of the KDE strat-

Marcel is an award-win-
ning columnist, book au-
thor, public speaker, and
radio and television per-
sonality and a well-known
voice in the Linux and open source uni-
verse. He’s also a published science fic-
tion author and editor, a private pilot, and
was once a Top 40 disc jockey.

 AUTHOR

JULY 2010 ISSUE 116 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM 24

COVER STORIES
Plasmoids

egy to find a wide audience and deliver applications across the
device spectrum: that means desktop computers, notebooks
and netbooks, tablets, ebook readers, smartphones, televisions
… in essence, the entire device spectrum!

Imagine walking into a convention with your smartphone or
tablet at your hip. The network hosts a number of QtScript
plasmoids, shared and free to access. One of these is an inter-
active program schedule, in which you can specify the things

that interest you and be noti-
fied before the events start.
Your Plasma device loads

up the application, giv-
ing you the tools

you need

in the envi-
ronment
where it’s
needed. Best
of all, the ap-
plication
server, which
could be any

number of de-
vices, doesn’t care what

you are running either.
I’m going to start by showing

you a rather cool desktop trick, after
which I’ll show how easy it is to create

JavaScript plasmoids. Hey, if I can write one, so can
you. To begin, take a plasmoid that resides on your desk-

top activity. If you right-click on the plasmoid (or widget), it
offers you a chance to change its settings. What those settings
are and how many settings can be affected vary with each plas-
moid. One of those settings will be Share (Figure 1).

The first thing to do is check the box labeled Share this wid-
get on the network. If you click OK here without checking the
second box (Allow everybody to freely access this widget), you’ll
get a password request when someone first tries to add the

widget to their desktop (Figure 2). After you enter a password,
the remote user will have the opportunity to enter theirs,
which allows them to add that widget to their desktop.

As you can see, this dialog has two checkboxes. One allows a
user access to any service you are offering. The second remem-
bers that choice beyond the current logged-in session.

When you do decide to share a plasmoid on the network, it
pops up an alert in the messaging area of any workstation on
the network stating that there is a new widget available for use
(Figure 3). If you click on the button provided to get it and it
has been password or PIN protected, you’ll be asked for the
credentials. When you enter the information, it will simply ap-
pear on your desktop.

What makes all of this particularly cool is that you can put
JavaScript plasmoids on other devices that use Plasma work-
spaces. That includes netbooks or anything that uses the new
Plasma Mobile shell, like certain smartphones. Also, you can
use the Plasma Windowed app (which runs Plasmoids as full-
screen apps on such devices). The Plasma Media Center [3]
(currently in development) will similarly provide support for
local and remote widgets, meaning you could add these wid-
gets to your television. It’s all part of the infrastructure.

In fact, the current Plasma mobile roadmap includes the abil-
ity to share widgets with your IM contacts over Telepathy
“tubes” (akin to HTML5 Storage). There’s also a dialog man-
ager so when a Plasmoid pops up a window, such as for con-
figuration, it can be handled properly for whatever device is
calling it. On the desktop, it just shows a simple window as al-
ways, but on netbooks and mobile devices, it integrates the di-
alog with the full-screen interface.

Another item on the roadmap this year involves implement-
ing cryptographic web-of-trust verification of payloads deliv-
ered over the network so you can confirm that, yes, the widget
from your television was actually written by Big T.V. Manufac-
turer or that it really did come from my desktop to yours.

Now that you understand the power and potential of these
little applications, let’s get started.

Building a JavaScript Plasmoid
Plasmoids come packaged in a single archive file with a .plas-
moid extension. That archive includes the code itself, images,
configurations, etc. – whatever is required for the complete ap-

Figure 1: Like that desktop widget? Want to

share it?

Figure 2: Plasmoids may be shared freely or

protected by password.

Figure 3: When you choose to share a plas-

moid on the network, other workstations

will be notified.

Enter plasma and mobile in the YouTube search box for a hand-
ful of videos created to demonstrate the Plasma mobile shell on
a variety of devices (e.g., Nokia N900). Very cool stuff.

 PLASMA MOBILE

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM ISSUE 116 JULY 2010 25

COVER STORIES
Plasmoids

plication to do what it needs to do. My demonstration plas-
moid will be called hello-linuxpro, so I’ll start by creating a di-
rectory by that name. In that directory is another directory
called contents and another below that called code.

mkdir -p hello-linuxpro/contents/code

Truth be told, you don’t need anything more than a contents
directory, but common cod-
ing convention separates the
various bits and pieces that
make up the plasmoid to
make it more readable and
easier to work with. And, it
looks cleaner.

In the top-level directory
(hello-linuxpro), create a

file called metadata.desktop. Using your favorite editor (mine
is still Vi, or Vim), enter the information as shown in Listing 1.

Much of what you find here makes sense. Besides being nec-
essary (Plasma needs it to load the plasmoid), it lists some use-
ful information about the plasmoid: what it’s called, who
wrote it, and so on. Name and Comment both show up in the
Add Widget dialog. Icon can be something supplied with the
plasmoid (in which case you would add the path) or just one
of the standard KDE icons – I used KSnapshot’s icon.

The next four lines, under Type=Service, tell Plasma what
this thing is, what to do with it, and where to find the main
code. The path specified at X-Plasma-MainScript is relative to
the contents directory that you created at the beginning. It
also specifies the initial display size of the widget as it appears
on your desktop.

Take note of the X-KDE-PluginInfo-Category; you could
call this whatever you like, but if you plan on releasing it to the
community, the value there must be one of the category names

found at Projects/Plasma/PIG [4]. Pretty much everything
else just makes up the About information for the plasmoid.

And Now, the Code!
This widget will be really simple. In your favorite editor, create
the main script as you defined it in the metadata.desktop defi-
nition, in this case code/main.js under contents. My script
contains the following lines:

layout = new LinearLayout(plasmoid);

label = new Label();

layout.addItem(label);

label.text = 'Hello LinuxPro!';

I’m keeping this very simple, but I promise to give you pointers
to the plasmoid QtScript API a little later in this column. For
now, I’ll use only a few basics. The word plasmoid is a global
variable, and it represents
your widget. Although it can
be a lot more than just what’s
here, you’ll be able to explore
that in the API specs.

To begin, create the layout
by passing plasmoid to Lin-
earLayout. This attaches the
layout to the widget. Also, I
added a label to the layout
and set the label text.

That is all there is to it. That said, it is probably premature to
package this plasmoid, so I will test it first. To do that, I will
use a little program called plasmoidviewer. Here’s how it
works:

plasmoidviewer /path/to/hello-linuxpro

The result looks like Figure 4.
Now I’ll try a different example – something a little more in-

teresting. This time, I’ll load an SVG image file and display it.

01 [Desktop Entry]

02 Name=Hello LinuxPro

03 Comment=My first plasmoid

04 Icon=ksnapshot

05

06 Type=Service

07 X-KDE-ServiceTypes=Plasma/Applet

08 X-Plasma-API=javascript

09 X-Plasma-MainScript=code/main.js

10 X-Plasma-DefaultSize=300,100

11

12 X-KDE-PluginInfo-Author=Marcel Gagne

13 X-KDE-PluginInfo-Email=marcel@marcelgagne.com

14 X-KDE-PluginInfo-Name=hello-linuxpro

15 X-KDE-PluginInfo-Version=1.0

16 X-KDE-PluginInfo-Website=http://plasma.kde.org/

17 X-KDE-PluginInfo-Category=Examples

18 X-KDE-PluginInfo-Depends=

19 X-KDE-PluginInfo-License=GPL

20 X-KDE-PluginInfo-EnabledByDefault=true

 LISTING 1: metadata.desktop

01 mainLayout = new LinearLayout(plasmoid);

02

03 svg = new PlasmaSvg('linuxpro_logo')

04

05 plasmoid.action_myAction = function()

06 {

07 plasmoid.update()

08 }

09

10 plasmoid.paintInterface = function(painter)

11 {

12 rect = plasmoid.rect

13 svg.resize(rect.width, rect.height)

14 svg.paint(painter, rect.x, rect.y)

15 }

 LISTING 2: Working with an SVG File

Figure 4: A simple plasmoid that

does nothing but display a

friendly message.

Figure 5: Yes, it’s the Linux Pro

Magazine logo, displayed in a

plasmoid.

JULY 2010 ISSUE 116 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM 28

COVER STORIES
Plasmoids

In this example, I’ll leave the metadata.desktop file out and
only show you the code (Listing 2).

The result of this, seen with the plasmoidviewer program, is
shown in Figure 5.

When you are happy with the function of your plasmoid, it’s
time to install it, package it, or both. To install the widget so
you can use it on your desktop, use the plasmapkg command
with the -i flag:

plasmapkg -i /path/to/your-plasmoid

If everything goes well, you should see a message saying Suc-
cessfully installed /path/ to/ your-plasmoid. Now you can add
your widget to the desktop with the Add Widgets dialog. Right-
click on the desktop or click the cashew in the top right-hand
corner. If the desktop is currently locked down, you might have
to click Unlock Widgets first. The new plasmoid will appear in
the list and on your desktop when you click on it. My new logo
plasmoid now sits just above my system tray as in Figure 6.

Should you be so happy with your work that you just have to
share it with the world, it is now time to package it. This is
simply a matter of zipping up the file and renaming it some-
thing.plasmoid:

cd hello-linuxpro

zip -r hello-linuxpro.zip .

mv hello-linuxpro.zip hello-linuxpro.plasmoid

The name you would use for the plasmoid must be the same
name you used in the metadata.desktop file under X-KDE-Pl-
ugIn-Name. To install this as a package, you can use the same
command as earlier. Instead of reading a directory, plasmapkg
will read the package file:

plasmapkg -i hello-linuxpro.plasmoid

That’s it!

PlasMate
I’ve given you some very simple examples here, but if you
want to get into some slightly more serious Plasmoid develop-
ment, you will want to use PlasMate, a rather cool little tool
that is in the early stages of development. PlasMate [5] is es-
sentially an integrated development environment for writing
plasmoids. It works with JavaScript, Ruby, and Python plas-
moids (Figure 7).

PlasMate takes care of the entire project development cycle
for you – from creating the structure for new projects, to hand-
ling revisions, to testing, packaging, and even publishing your
plasmoids. It has a built-in previewer (so you don’t have to run

Figure 6: The Linux Pro Magazine logo now sits proudly on my desktop, just above the system tray and clock.

Figure 7: PlasMate is an integrated development environment for cre-

ating a variety of KDE plasmoids.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM ISSUE 116 JULY 2010 29

COVER STORIES
Plasmoids

plasmoidviewer externally), and it has links to the QtScript API
in its documentation, so you don’t have to go looking for it.

The only catch with PlasMate is that it is still very early in
development. Nevertheless, it is an extremely handy and useful
package. If you are going to do any plasmoid development, I
highly recommend that you check it out. Literally. To build
plasmate, you’ll need some core development tools, such as
compilers, CMake, and so on. And, of course, you’ll need the
KDE development libraries. On my Kubuntu test system, I man-
aged that with the following command:

sudo apt-get install build-essentials cmake kde-devel

Once all this was installed, I downloaded (or checked out) the
latest PlasMate source from its anonymous SVN repository:

svn co svn: //anonsvn.kde.org/home/kde/trunk/playground/base/

plasma/plasmate

This created a folder called plasmate. All that remained was to
build the package:

cd plasmate

cmake .

sudo make install

Building the package only took a few minutes, and installation
went through without a hitch, so it looks pretty good. Once
you start PlasMate, you have the option of opening an existing

project or creating something entirely new from the “Home”
screen (Figure 8). PlasMate handles the creation of plasmoids,
data engines, runners, and themes.

Although JavaScript might be easier to work with than other
languages, not everyone will just jump in and start coding. If
you are just starting out and would like a little help, a rather
interesting little button at the bottom of the PlasMate start
screen says Import from Get Hot New Stuff. The best teacher is
often someone else’s work. Open source software is great for
many reasons, one of which is that you get to see what others
have done before you and, using the source code that is avail-
able, you have a great base from which to learn by modifying
the code and adding your own touches.

When you click the Import from Get Hot New Stuff button,
and you’ll see the PlasMate Add-On Installer (Figure 9).

Scroll down the list, find something that interests you, and
click Install. The package will be imported into PlasMate, into
the appropriate structure. Now you are ready to start exploring,
tweaking, and just plain old hacking. Or, to put it another way
– have fun.

Looking Forward
The QtScript/ JavaScript framework that is part of the new KDE
is an amazing piece of forward-looking code wrapped up in
seemingly playful eye candy. The next generation of plasmoids
and widgets is already set to power a vast array of network-
connected devices, from smartphone to televisions. It’s also an
exciting step into a world where applications are location sen-
sitive and available on demand.

The relative simplicity and inherent security and portability
of JavaScript makes this an exciting arena for aspiring coders,
including those of us who just dabble. ■■■

[1] Plasma: http:// plasma. kde. org

[2] Plasma JavaScript API: http:// techbase. kde. org/ index. php?
 title=Development/ Tutorials/ Plasma/ JavaScript/ API

[3] Plasma Media Center:
http:// techbase. kde. org/ Projects/ Plasma/ Plasma_Media_Center

[4] Plasma interface guidelines:
http:// techbase. kde. org/ Projects/ Plasma/ PIG

[5] PlasMate: http:// techbase. kde. org/ Projects/ Plasma/ PlasMate

 INFO

Figure 8: PlasMate handles the creation of new projects and can

import from existing plasmoids.

Figure 9: What better starting point for learning the ropes than

something that already exists and happens to be hot.

JULY 2010 ISSUE 116 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM 30

COVER STORIES
Plasmoids

