
The KDE desktop and the underly-
ing Qt application framework are 
developed independently but in 

parallel. The needs of KDE result in new 
functionality in Qt, and new functional-
ity in Qt quickly leads to new features 
for KDE. The latest Qt version 4.6 release 
is packed with new features that are 
making their way to KDE desktops 
around the world. You’ll find many of 
these enhancements in KDE 4.4.

Many of the KDE 4.4 changes are fo-
cused on improving the user 
experience. For instance, the 
system tray has received a lot 
of love, and in this era of so-
cial networking, the blogging 
client Blogilo makes its 
debut. This article takes a 
deeper look at some of the 
technical goodies available in 
KDE 4.4. Specifically, I’ll 

show you a practical example of how to 
use Qt’s animation framework, and I’ll 
describe a scenario for integrating multi-
touch technology. Unless you’re a KDE 
programmer, you probably won’t have to 
interact directly with these components, 
but a quick look behind the scenes at 
how they work will give you some con-
text for understanding the new genera-
tion of special effects that will soon 
begin appearing in future updates of 
your favorite KDE applications.

Animation 
Framework
Much of the focus with KDE 
4.4 has been to provide a 
smoother, more polished, 
user experience. Part of this 
work has been about animat-
ing transitions – for instance, 
hovering over the buttons of 

the window frame causes them to fade 
in and out, instead of just snapping to 
the current state.

Another area of KDE where smooth-
ness is high on the priority list is the 
Plasma desktop. The goal is to make it 
easy for developers to add animations 
and effects, which will, in turn, make 
KDE more intuitive for the user. In Qt 
4.6, this goal is addressed through a 
brand new animation framework based 
on the QAbstractAnimation class. Dur-
ing the development of Qt 4.6, this 
framework became known as Qt Kinetic.

The animation framework centers 
around the concept of animating proper-
ties. Animation is not limited to move-
ment, rotation, and scaling, but can also 
affect such things as transparency and 
color. How does all this look from a de-
veloper’s point of view? For one thing, 
the Plasmoid desktop is built around the 
graphics view classes.

As an example of how this works, I’ll 
animate a set of graphics items in a 
scene. The important source code for 
this example is shown in Listing 1. The 
listing describes two different anima-
tions of two widgets that are shown 
through a graphics view. The resulting 
window, without effects, is shown in 
Figure 1.

Listing 1 shows the constructor of the 
viewing widget, which inherits QGraph-
icsView. The QGraphicsView class is 
used to show the contents of a QGraphic-
sScene. The contents of scenes are built 
from QGraphicsItem objects.

Line 4 simply sets up the view render, 
anti-aliased to transform pixmaps as 
smoothly as possible. This provides the 
best possible rendering quality at a com-
putation cost that can be handled by 
most desktop computers.

Lines 6-7 create a scene and make sure 
it is shown through this view. The scene 
is given a rectangle stretching 200 pixels 
wide and high from the coordinate (-100, 
‑100). If no scene rectangle is specified, 
the scene will grow as needed – causing 
the animations to change the dimen-
sions of the scene. This, in turn, will re-
sult in sliders being added or the con-
tents being moved around – something 
that I need to avoid.

Lines 9-11 create the first item on the 
scene. An item can be anything you can 
imagine – a bitmap, an SVG drawing, a 
basic shape such as a rectangle or circle, 

Qt 4.6 passes a collection of new functionalities to KDE 4.4. We’ll 

show you the animation framework and KDE’s new multi-touch 

feature. By Johan Thelin

Test driving some new features of KDE 4.4

Animated

Figure 1: The two ani-

mations in action.

J
a
m

es T
h

ew
, Foto

lia

Qt 4.6 and KDE 4.4Programming

58 ISSUE 113 April 2010



or even your own code-generated con-
tents. In this example, I embed a widget, 
which is considered heavy lifting and 
not recommended when performance is 
of essence. However, I want to have ac-
cess to the clicked signal so that I can act 
on mouse events. This can be done di-
rectly using a non-widget item, but that 
requires that I sub-class the item and 
catch the mouse button press event.

The button is first instantiated and 
then added to the scene, which automat-
ically places it inside a QGraphicsProxy-
Widget. This class takes care of all the 
details of passing events and drawing 
operations between the widget and 
graphics scene. When the button is 
added, the setPos call centers the button 
and places it slightly over the middle.

At lines 12-14, one Qt 4.6 enhance-
ment enters the scene: graphics effects. 
The latest version of Qt lets the devel-
oper add graphics effects to any widget 
or item. The standard effects shipped 
with Qt are blur, colorize, drop shadow, 
and add opacity. If you find these effects 
insufficient, you can create custom ef-
fects, as well as combine existing ones. 
In the source code, a blur effect is ap-
plied to the proxy item holding the wid-
get. However, the blur radius is set to 0, 
so the effect cannot be seen at first. But 
rest assured, I will use this effect later.

Lines 16-19 are spent on adding an-
other button to the scene with almost 
the same code I used for the first button. 
This button appears under the previous 
button. By default, the transform origin 
point is located in the upper left corner, 
but I have centered it in the middle of 
the button. The caption of the button is 
Rotation, which gives away why it is im-
portant to change the origin point. The 
rotation looks better if it rotates around 
the center and not around the upper left 
corner of the button.

Having created the two buttons, I can 
start looking at the animation classes. 
Line 21 roughly shows the idea behind 
the new property animation class. Given 
a target object, in this case blurEffect, 
and a property to animate, "blurRadius", 
the property animator is ready to go. All 
that is left is some data on how the prop-
erty should change over time.

For all animations, a time value moves 
between zero and one. In lines 22-24, 
start and end values are set, but also a 
key value of 5.0 for the time value of 0.5 

– that is, halfway through. The result is 
that the blur radius is increased from 
zero to five, and then back to zero again. 
Line 25 tells how long this process will 
take: one and a half seconds.

Lines 28-31 set up another animation 
for the rotation property of the other but-
ton. The button spins full circle during 
two seconds. However, line 32 specifies 
an easing curve, which describes how 
the animation time value is to go from 0 
to 1. In this case, I picked OutBounce, 
meaning that the rotation will end with a 
slight bounce. This will make the anima-
tion look more attractive than just a sim-
ple linear speed rotation.

Take time to pause at line 33 (the final 
line) to see how the animation frame-

work fits into the graphics effects 
classes. Also, notice that setting up the 
scene took just as much code as setting 
up the animations.

In KDE 4.4, you are bound to see 
much more animation. A whole set of 
stock animations are ready to apply to 
plasmoids. For example, to make an item 
pulse, simply use the animator to create 
a pulse animation, apply a widget to it, 
and connect it to a starting signal, as I 
have done in the following code:

Animation *pulseAnimation = U

    Animator::createU

    (Animator::PulseAnimation);

pulseAnimation‑>U

   setWidgetToAnimate(button);

 1 �ViewWidget::ViewWidget(QWidget *parent)

 2 �    : QGraphicsView(parent)

 3 �{

 4 �    setRenderHints(QPainter::Antialiasing | QPainter::SmoothPixmapTransform);

 5

� 6 �    QGraphicsScene *scene = new QGraphicsScene(‑100, ‑100, 200, 200, this);

 7 �    setScene(scene);

 8

� 9 �    QPushButton *blurButton = new QPushButton("Blur");

10 �    QGraphicsProxyWidget *blurItem = scene‑>addWidget(blurButton);

11 �    blurItem‑>setPos(‑blurButton‑>width()/2, ‑10‑blurButton‑>height());

12 �    QGraphicsBlurEffect *blurEffect = new QGraphicsBlurEffect(this);

13 �    blurEffect‑>setBlurRadius(0);

14 �    blurItem‑>setGraphicsEffect(blurEffect);

15

�16 �    QPushButton *rotateButton = new QPushButton("Rotation");

17 �    QGraphicsProxyWidget *rotateItem = scene‑>addWidget(rotateButton);

18 �    rotateItem‑>setPos(‑rotateButton‑>width()/2, 10);

19 �    rotateItem‑>setTransformOriginPoint(�rotateButton‑>width()/2, 

rotateButton‑>height()/2);

20

�21 �    QPropertyAnimation *blurAnimation = new Q�PropertyAnimation(blurEffect, 

"blurRadius", this);

22 �    blurAnimation‑>setStartValue(0.0);

23 �    blurAnimation‑>setKeyValueAt(0.5, 10.0);

24 �    blurAnimation‑>setEndValue(0.0);

25 �    blurAnimation‑>setDuration(1500);

26 �    connect(blurButton, SIGNAL(clicked()), blurAnimation, SLOT(start()));

27

�28 �    QPropertyAnimation *rotateAnimation = new Q�PropertyAnimation(rotateItem, 

"rotation", this);

29 �    rotateAnimation‑>setStartValue(0.0);

30 �    rotateAnimation‑>setEndValue(360.0);

31 �    rotateAnimation‑>setDuration(2000);

32 �    rotateAnimation‑>setEasingCurve(QEasingCurve::OutBounce);

33 �    connect(rotateButton, SIGNAL(clicked()), rotateAnimation, SLOT(start()));

34 �}

Listing 1: Animation

ProgrammingQt 4.6 and KDE 4.4

59ISSUE 113April 2010



connect(button, SIGNAL(clicked()), U

    pulseAnimation, SLOT(start()));

Multi-Touch
Another technology that is finally ap-
pearing in Qt and KDE is multi-touch. 
Popularized through advanced phones, 
multi-touch technology has reached tab-
let PCs and desktop software. Multi-
touch technology lets the user operate a 
touchscreen device by simultaneously 
touching with two fingers.

The introduction of multi-touch pres-
ents the developer with two problems. 
First, multiple parts of the user interface 
can be altered by the user at once – just 
as if multiple mouse pointers were avail-
able – which limits the number of as-
sumptions that can be made when wid-
gets depend on each other. This problem 
is not really something that can be ad-
dressed from Qt or even KDE; instead, 
each application developer must con-
sider the implications of this before en-
abling multi-touch support.

Second, interpreting what multiple 
touch points are telling you is addressed 
through gestures, which let Qt interpret 
touch point movements. Gestures can be 
considered at a higher level API, which 
is far easier than trying to decode and in-
terpret the interaction manually between 
multiple touch points.

Listing 2 includes the better part of the 
PinchWidget class (Figure 2), wherein 
the scaled and rotated rectangle is con-

trolled by the pinch gesture. The dark 
rectangle represents the original location 
before rotation and scaling.

Note: The pinch gesture is the two-fin-
ger gesture that made the iPhone famous. 
Move the fingers apart to zoom in, and 
move them together to zoom out. Rotat-
ing the finger grip rotates the image. The 
PinchWidget does all this, but to a simple 
rectangle.

Outside the listing, in the constructor 
of PinchWidget, a call to grabGesture​
(Qt::PinchGesture) is made. Without this 
call, the widget will not receive any 
pinch gesture events. When the gesture 
has been grabbed, the program can in-
tercept it as an event.

The event method (lines 1-6 of Listing 
2) intercepts gesture events and passes 
them to the gestureEvent method (lines 

8-16), which in turn, determines whether 
the gesture is a pinch gesture. If so, it 
passes it to the pinchGesture method.

The pinchGesture method (lines 18-37) 
interprets the gesture and updates the 
state of the widget accordingly. The 
QPinchGesture class keeps track of what 
has changed, which I use in the first if 
statement (line 21) to test if the rotation 
angle has changed. If so, the program 
updates the rotationAngle variable. If the 
scale has changed (line 27), the program 
updates the currentScaleFactor (the scale 
of the current resize operation).

The if statement at line 31 checks if 
the gesture has finished. If so, I update 
the scaleFactor and reset the cur-
rentScaleFactor to 1 to prepare for the 
next pinch gesture to take place. Regard-
less of what happens next, the program 
repaints the widget in line 36.

Conclusion
Handling these events will be more and 
more important for new applications as 
the input devices are updated. However, 
for KDE developers, it need not be so 
complicated. For instance, all Plasmoids 
can be pinched for rotation and scale out 
of the box. In addition to pinching, Qt 
4.6 enables panning – that is, scrolling 
by touch (for example, moving to the 
next picture in a picture viewer) – and 
swiping. All these gestures are available 
to KDE application developers and, in 
the end, the users.  n

 1 �bool PinchWidget::event(QEvent *event)

 2 �{

 3 � if(event‑>type() == QEvent::Gesture)

 4 �  return gestureEvent(static_cast<QGestureEvent*>(event));

 5 �  return QWidget::event(event);

 6 �}

 7

� 8 �bool PinchWidget::gestureEvent(QGestureEvent *event)

 9 �{

10 �    if(QGesture *pinch = event‑>gesture(Qt::PinchGesture))

11 �    {

12 �        pinchGesture(static_cast<QPinchGesture*>(pinch));

13 �        return true;

14 �    }

15 �    return false;

16 �}

17

�18 �void PinchWidget::pinchGesture(QPinchGesture *gesture)

19 �{

20 �    QPinchGesture�::ChangeFlags flags =  

gesture‑>changeFlags();

21 �    if(flags & QPinchGesture::RotationAngleChanged)

22 �    {

23 �        qreal value = gesture‑>rotationAngle();

24 �        qreal lastValue = gesture‑>lastRotationAngle();

25 �        rotationAngle += value ‑ lastValue;

26 �    }

27 �    if(flags & QPinchGesture::ScaleFactorChanged)

28 �    {

29 �        currentScaleFactor = gesture‑>scaleFactor();

30 �    }

31 �    if(gesture‑>state() == Qt::GestureFinished)

32 �    {

33 �        scaleFactor *= currentScaleFactor;

34 �        currentScaleFactor = 1;

35 �    }

36 �    update();

37 �}

Listing 2: PinchWidget Class

Figure 2: The pinch widget in action.

Qt 4.6 and KDE 4.4Programming

60 ISSUE 113 April 2010


