
The year 2009 has been very inter-
esting for SSL security. Several
new and practical attacks were

publicized, and fortunately, most were
fixed within a relatively short period of
time. The year began with an effective
attack against MD5-based SSL certifi-
cates [1], technologically a very sophisti-
cated attack and not one we’re likely to
see in the wild now that MD5 certificates
are being phased out. Then, at BlackHat
2009 in Las Vegas, Moxie Marlinspike
talked about several attacks against SSL,
including a very old issue that has re-
cently become a problem.

Something Old: SSL Strip
This attack is fairly simple and imagina-
tive. Because the majority of users go

to non-SSL-secured websites before
being redirected to SSL-encrypted web-
sites (e.g., a payment processor, account
login server, etc.), attackers can easily
prevent them from using encryption and
thus snoop all their traffic. In the past,
an attacker might have tried to execute a
man-in-the-middle attack by sniffing un-
encrypted traffic or using a self-signed
certificate to pretend to be a legitimate
site, but these are exactly the things that
SSL was designed to prevent.

But what if the victim never makes it
to the secure website? Many sites (my
bank, probably your bank, most major
online retailers, etc.) have non-SSL-pro-
tected front ends where you do your
shopping or access the login page to get
to your account. By rewriting all links

in the web pages that point

to SSL-encrypted websites to point to
non-SSL-encrypted sites, an attacker can
view and rewrite content without alert-
ing the user, unless of course they are
paranoid enough to notice that the lock
icon and so forth are missing. The SSL
strip program automates all of this, in-
cluding an ARP spoofer (so anyone on
your local network or sharing the same
wireless point as you) to redirect traffic
to your system [2].

Installing SSL Strip
SSL strip is a Python application that
uses the Twisted [3] framework. So, all
you need to do is install twisted, down-
load and unpack the SSL strip tarball
and optionally install it (if you don’t in-
stall it, you can simply run it from the
local directory you unpacked it to):

yum install twisted‑web

apt‑get install twisted‑web

python setup.py install

Then, you simply turn on IP forwarding,
add an iptables route to redirect HTTP
traffic, and run the sslstrip Python pro-
gram. To redirect local machines to your
system, you can use the arpspoof pro-
gram that is included with the dsniff pro-
gram [4] or other tricks (e.g., DHCP at-
tacks, DNS poisoning, etc.).

Something New: NULL
Character SSL Certificates
When an SSL certificate is created and
sent in to be signed by a signing author-
ity (e.g., VeriSign), about the only field
that anyone actually pays any attention
to is the CN or common name field. The
CN field specifies the name of the server,
such as www.example.org, www.big-

bank.com, or *.somecompany.com.
Moxie Marlinspike discovered that

the X.509 and SSL certificate
standards specify the
CN string as a PAS-
CAL string; so, essen-

tially, you declare the
length of the string at the

0th position and then add
the string data after it. How-

ever, because most (well, basi-
cally all) SSL certificate process-

ing software is written in C, the
software typically handles the string

Something old, something new, something borrowed, and something

blue. By Kurt Seifried

As with marriage, SSL security success is in the details

AttAcks
AgAinst ssL

Security Lessons: Secure ProgrammingSYSADMIN

60 iSSue 112 March 2010

as a C string (which means it is NULL
terminated (\0) at the end to indicate
where it stops). Most programmers did
not realize the implication of this and
simply read the CN string into a C string
structure and merrily went on their way.

The problem arises, however, when
someone (who legitimately owns exam-
ple.org, for example) gets a certificate for
www.bigbank.com\0www.example.org.
Back in the early days of SSL certificates,
when they were expensive, humans ac-
tually looked at these requests, which
not only included certificate requests but
also often included business records and
other forms of proof to show you had
ownership of the domain and the right
to use it. (Indeed, when I first got a cer-
tificate for seifried.org, because it was
non-commercial, I had to send in scans
of my passport to prove I had a claim to
“seifried.”) Thus, any malformed or
strange-looking request was likely to get
caught and not processed.

Times have changed, and now you
can get SSL certificates in a few minutes
using a completely automated process
(which most likely does a WHOIS
lookup on your domain and then emails
the admin or technical contact). Thus,
you could essentially apply for a certifi-
cate that looks like it belongs within
your domain (i.e., example.org). How-
ever, when the application is processed
by a browser, because it handles the CN
as a C string, it will read the first part of
www.bigbank.com, encounter the NULL
terminator, and then drop the example.
org part (allowing you to spoof www.
bigbank.com with ease).

The good news is that fixing this is rel-
atively easy; the certificate authorities
simply revoked any certificates with a
NULL character in them (which should
never occur) and implemented filters to
prevent it from happening again. On the
client side, most browsers and SSL-capa-
ble clients and servers (e.g., mutt, Post-
greSQL, fetchmail, Opera, etc.) have
been updated to fix this as well. For
more information on this attack and ex-
tensions of it, please see Moxie Marlin-
spike’s BlackHat presentation (in PDF
format) [5].

Something Borrowed: Your
Name
We’ve all accidentally gone to a site like
reddit.org (reddit.com is the real one),

icanhasacheezburger.com (icanhascheez-
burger.com), or some other domain
squatter. In the past, things were rela-
tively simple: If an attacker wanted to
register a domain that imitated a legiti-
mate one, he or she would either drop or
add letters or swap the number one and
a lowercase L, for example. Defending
yourself against it was kind of a pain,
but not impossible; you simply had to
register a lot of extra domain names with
common typos, the lowercase L (l) and
the one (1) swapped, and so on. Fortu-
nately, the character set that allowed
valid domain names was limited to sev-
eral dozen characters.

However this has changed with the
advent of International Domain Names.
Now several dozen characters look virtu-
ally identical to Roman letters, such as
the Cyrillic letters Es (c), Shha (h), Ye
(e), Je (j), On (o), Er (p), Dze (s), Kha
(x), and U (y) or the Greek omicron (ο)
or nu (ν). Because you have no easy way
to verify the domain names you are
looking at, it is hoped that browsers will
start giving visual queues about the
makeup of domain names, perhaps mak-
ing the text a different color if it is out-
side your country, for example [6].

Something Blue: SSL
Renegotiation
I’m running out of space, so this topic
will be short and sweet. Basically, back
in 1990 when the SSL and TLS specifica-
tions were written, they were slightly
over-engineered to allow behaviors (like
renegotiation) that turned out not to be
needed or wanted by most people. By
exploiting this renegotiation behavior,
attackers can insert content that allows
them to execute a new class of CSRF
(Cross-Site Request Forgery) attacks. But
not to worry, right? I mean most modern
applications have strong CSRF protec-
tions, such as one-time tokens that
change for each transaction preventing
the insertion of a false transaction [7].

Unfortunately, some websites allow
certain behaviors that can result in prob-
lems. The first real-world attack example
using this issue was against Twitter. The
twitter API (since fixed) allowed an at-
tacker to insert new HTTP request head-
ers into the request. With this, an at-
tacker could move the content of the
original request sent by the victim, such
as a cookie, to be sent as an HTTP POST.

This in turn resulted in Twitter taking
the HTTP POST data (the user’s cookie)
and posting it as a public tweet [8].

Fortunately, the solution to this prob-
lem is really easy: Many software ven-
dors are simply disabling SSL renegotia-
tion within their software. No renegotia-
tion, no attack.

Conclusion
It’s getting messy out there. Fortunately,
security researchers are getting pretty
good at reading the specification docu-
ments, comparing the systems that have
actually been built, and finding the re-
sulting security flaws. Perhaps someday
the people writing the specifications and
software will get better at playing nicely
with each other. n

[1] “Broken chain of Trust”
by Kurt Seifried, Linux Pro Maga‑
zine, March 2009, p. 64, http:// www.
 linuxpromagazine. com/ Issues/ 2009/
 100/ BROKEN‑CHAIN‑OF‑TRUST

[2] SSL Strip: http:// www. thoughtcrime.
 org/ software/ sslstrip/

[3] Twisted:
http:// twistedmatrix. com/ trac/

[4] dsniff: http:// www. monkey. org/
 ~dugsong/ dsniff/

[5] More Tricks For Defeating SSL In
Practice: http:// www. blackhat. com/
 presentations/ bh‑usa‑09/
 MARLINSPIKE/ BHUSA09‑Marlinspik
e‑DefeatSSL‑SLIDES. pdf

[6] IDN homograph attack:
http:// en. wikipedia. org/ wiki/ IDN_ho‑
mograph_attack

[7] “attack of the cSrF” by Kurt
 Seifried, Linux Pro Magazine,
 February 2009, p. 66,
http:// www. linuxpromagazine. com/
 Issues/ 2009/ 99/ ATTACK‑OF‑THE‑CSRF

[8] TLS renegotiation Vulnerability
(cVE-2009-3555): http:// www.
 securegoose. org/ 2009/ 11/ tls‑renegot
iation‑vulnerability‑cve. html

INFO

SYSADMINSecurity Lessons: Secure Programming

61iSSue 112March 2010

Kurt Seifried is an
Information Secu-
rity consultant spe-
cializing in Linux
and networks since
1996. he often won-
ders how it is that technology works
on a large scale but often fails on a
small scale.

T
H

E
 A

U
T

H
O

R

