
The Linux kernel

mailing list com-

prises the core of

Linux development

activities. Traffic vol-

umes are immense,

often reaching

10,000 messages in

a week, and keeping

up to date with the

entire scope of development is a virtu-

ally impossible task for one person. One

of the few brave souls to take on this

task is Zack Brown.

zack’s kernel news
PMM
Michal Nazarewicz announced PMM

(Physical Memory Management), code

that allows users to allocate large contigu-

ous regions of physical memory. For Mi-

chal at Samsung, this allowed him to de-

code and scale JPEG images and pass the

scaled images to an X server, minimizing

memory usage and increasing efficiency.

Peter Zijlstra remarked that this might be

all well and good, but if no contiguous re-

gions of memory were available for allo-

cation, Michal’s PMM code would fall

down flat. After a short bit of uptime, few

systems would have any large contiguous

areas of RAM to choose from. Michal re-

plied that PMM reserved a large pool of

RAM at boot time and allocated memory

from the pool as needed. Peter asked how

Michal would stop the PMM reserved

RAM area from fragmenting as it is used.

Michal replied that different use cases

would result in fragmentation and the

only sure way to avoid this would be to

increase the size of the RAM pool re-

served at boot time. But that was not so

scalable. PMM, Michal said, was an at-

tempt to find a compromise between the

various needs of the running system. But,

Andrew Morton remarked, “We do have

capability in page reclaim to deliberately

free up physically contiguous pages

(known as “lumpy reclaim”). It would be

interesting were someone to have a go at

making that available to userspace.” Mi-

chal grabbed hold of that idea and

started a technical discussion about its

feasibility. It does seem that in its current

form, PMM would not be acceptable in

the kernel because of the very restricted

and specialized use case it represents.

In-Kernel Debugger Status
Jason Wessel proposed unifying KDB

and KGDB, essentially making KDB a

front end to KGDB. He tried to put the

idea as delicately as he could, asking

whether the KDB folks would still find

value in such a project. He posted some

patches along the lines of what he had in

mind. Maxim Levitsky and Louis Rilling

both jumped up to say that they liked

Status of LinuxPPS
Udo van den Heuvel asked for the status

of LinuxPPS (Linux Pulse Per Second):

Why was it being rejected for inclusion

in the kernel? Alan Cox and Andrew

Morton scratched their heads and said

they couldn’t remember what if any ob-

jection anyone had had to the code.

They both suggested resubmitting it be-

cause that would trigger any remaining

alarm bells that had ceased to echo in

the minds of anyone who cared.

The LinuxPPS (http:// wiki. enneenne.

 com/ index. php/ LinuxPPS_support) API

provides an interface between kernel

and user space across character devices.

A couple of weeks after that little ex-

change, Rudolfo Giometti submitted the

core LinuxPPS code for inclusion. His

idea was to make sure everyone signed

off on the basic features; at least then

there would be a big wad of code in the

kernel for the PPS developers to add

onto piecemeal.

At this point Andrew asked Rudolfo to

explain which ancient objections, if any,

remained unaddressed in the code. But

Alan said he certainly liked this latest

version. In response to Andrew, Rudolfo

said he had fixed all objections, the sole

objection being something from “George

Spelvin” that all parties had agreed

could wait until later. With no further

debate on the issue, it seems likely that

LinuxPPS – at least the core code – will

soon be merged.

KDB and would definitely love to see it

in the kernel. Christoph Hellwig also ex-

pressed enthusiasm for the idea, adding

that making KDB a front end to KGDB

would be fine with him. Martin Hicks

was also excited about this prospect. In

this thread at least, the consensus

seemed to be that having a native kernel

debugger would be excellent and merg-

ing KDB and KGDB in the way Jason

suggested would also be excellent. On

the other hand, Linus Torvalds has re-

sisted including a native debugger in the

kernel, and he certainly won’t want to

let a new front end in until his own ob-

jections are addressed. A week or so

later, Jason posted more patches, and

Ingo Molnár offered some fairly invasive

criticisms, remarking, “I supported and

helped a debugging back end and I don’t

consider a front end completely impossi-

ble either. But it will have to meet a lot

of stringent standards because a good

kernel debugging front end’s cross sec-

tion to the system is even larger than a

back end’s. It’s a tough job to get this

done.” Jason responded with an attempt

to address some of Ingo’s objections, but

a big effort will have to be put into this

before it will make it into the kernel.

Driver Coding Pitfalls
Atul Mukker from LSI Corp. announced

their intention to initiate a new approach

to LSI RAID controller driver creation.

They want to keep the code generic

across multiple operating systems, keep-

ing only small Linux-specific, Mac-spe-

cific, and so on, sets of surface code to

access the core driver. He asked for any

advice the Linux kernel community

wanted to give him.

Jeff Garzik agreed that this could be a

great benefit to everybody, if done right.

But he did feel that certain mistakes had

been made in the past, that they would

be best not to repeat. He said, “in the

past, when hardware vendors have cre-

ated a cross-OS layer for their drivers,

that layer wound up decreasing perfor-

mance, increasing code size, introducing

bugs, and decreasing overall portability.”

Kernel NewsPrograMMIng

66 ISSUE 105 AUGUST 2009

GET YOUR HANDS ON SOME

HOT NEW BOOKS
FROM APRESS

For more information about Apress titles,

please visit www.apress.com

Don’t want to wait for the printed book?

Order the eBook now at

http://eBookshop.apress.com!

Peter Seebach
978-1-4302-1043-6
$34.99 | 376 pp | November 2008

Ron Peters
978-1-4302-1841-8

$39.99 | 330 pp | December 2008

Kirk Bauer and Nathan Campi
978-1-4302-1059-7
$49.99 | 425 pp | December 2008

Andy Channelle
978-1-4302-1590-5

$39.99 | 500 pp | December 2008

Sander van Vugt
978-1-4302-1622-3
$44.99 | 400 pp | December 2008

Sander van Vugt
978-1-4302-1082-5

$39.99 | 424 pp | September 2008

He pointed to Intel’s network drivers as an example of a simi-

lar effort that had avoided the worst pitfalls. Atul was heart-

ened by this reply because it seemed that it was indeed pos-

sible to do what he’d envisioned. He asked for further sug-

gestions, and Jeff obliged. Jeff suggested making the code

modular, to keep code supporting specific hardware separate

from each other and separate from the OS-specific code. This

might not be a simple thing to do, Jeff said; in fact, he con-

sidered it a first-class engineering task. As a general admoni-

tion, he recommended avoiding too many C pre-processor

wrappers and recommended making good use of C’s native

types and enums.

Jeff also recommended that any code that could be gener-

alized and made non-specific to LSI’s drivers should be kept

out of the driver, so it could more easily be shared by other

projects. Jeff said that the driver’s ABI (Application Binary

Interface) should be consistent with other Linux drivers.

Features not unique to LSI but similar to features found in

other drivers should try to behave the way those other driv-

ers behaved. Features unique to LSI, Jeff said, were fair

game for LSI to handle however it wanted. Jeff concluded

that Linux contributors had to consider LSI’s code within the

context of code submitted from other hardware vendors, in-

cluding LSI’s direct competitors. This was primarily to avoid

code duplication, but also because multiple implementa-

tions of the same features would multiply the potential bugs.

The Linux maintainers also had to consider the future case

in which hardware would no longer have vendor support,

but users would still rely on the Linux drivers. Atul thanked

everyone for helping them get started with this project.

Event Configuration In DebugFS
Steven Rostedt announced enhancements to event tracing in

DebugFS. Enabling events one at a time can be tedious, and

even enabling them in groups requires too much detail. Ste-

ven wanted to be able to enable all tracing events below a

given directory in DebugFS, so his patch created a new file in

each directory called enable. A value of 1 in such a file will

enable all events defined in that directory and all subdirecto-

ries. A value of 0 will disable the same set of events. But he

didn’t stop there! To prune the directory tree selectively, you

can put a 1 in the enable file of a given directory and then a 0

in that of any subdirectory to be excluded. So, with a mini-

mum of effort, swaths of events can be enabled and excluded,

without the bother of naming them all. Frederic Weisbecker

loved this patch, but Li Zefan objected, saying Steven’s im-

plementation made it difficult to figure out which events

were enabled. He said that he’d normally expect to get a list

of enabled events by viewing the config file, but in Steven’s

patch, the config file would mysteriously contain only a 1 or

0. Steven’s response was that the patch had taken him 15

minutes to code, claiming the benefit of simplicity, and that

it was tailored for the person setting the events rather than

anyone interested in reading them. Because the configura-

tion files referred to a hierarchically organized directory tree,

all the information was still available and could be retrieved

by a script. Li replied that he had no serious objection to

this, but had brought it up in case anyone else wanted to

take issue with it. Apparently, no one did.

