
Strace is a useful little program –

installed by default on most

Linux systems – that allows you

to take a look at the system calls used

by an application. Don’t be misled by

the name: strace doesn’t provide a stack

trace – it just reports on system calls.

If you are having problems with a

homegrown application – or with any ap-

plication that offers you access to the

source code – you can use strace to help

determine where a program is crashing

or what problems it is having. Even if

you are not tracing a problem, strace is

useful because it can help you find out

more about what your system is doing,

which can sometimes help with perfor-

mance tuning and resource management.

In this article, I’ll help you get started

with strace by examining a pair of “Hello

World” programs – one in Perl (a script-

ing language) and one in C (a compiled

language). Next month, I’ll cover some

more advanced situations and take a

deeper look into the strace output.

The Command
The basic strace command is:

strace program_name

However, this outputs everything

straight to standard error (i.e., to the

screen), and, as I’ll show, there can be

quite a lot of output. Thus, it’s usually

best to use the -o option to specify an

output file:

strace -o outputfile.txt U

program_name

Some editors, such as vim, are able to do

syntax highlighting of strace output. The

syntax highlighting feature will display

different parts of the file – and different

parts of each line – in different colors.

When you are trying to make sense of

strace output, which can look a little

confusing, this technique is particularly

useful, and I strongly recommend you

use an editor that offers syntax high-

lighting.

Strace on Perl
Consider the “Hello World” Perl script

shown in Listing 1. In case you’re not fa-

miliar with Perl, the first line tells the

shell what program to use to run this

script and, in this case, also sets the -w

flag, which turns warnings on. The use

strict statement turns the strict module

on; use strict, which lets you see what

output you get when loading a module,

and -w are not really necessary in this

script, but they are good habits. Finally,

the last line prints the string “Hello,

Perl!” with a newline at the end.

After you’ve saved this script, change

to the directory that it’s in, make the

script executable with chmod u+x hel-

loworld.pl, and then, before you start

looking at it with strace, run ./hel-

loworld.pl to make sure the script con-

tains no typos. Once you know the script

is working, run strace on it with:

strace -o strace_perl.out U

./ helloworld.pl

Get started with strace by examining a pair of “Hello World” programs.

Next month, in the second part of this two-part series, I’ll take a deeper

look at strace output. BY JULIET KEMP

Get started with strace and debug faster

BUG BUMPER

S
tu

a
rt M

o
n

k, Foto
lia

NO MORE DOWNLOADS!

ORDER TODAY: WWW.LINUX-MAGAZINE.COM/BACKISSUES

Ubuntu 8.10 “Intrepid Ibex”
■ Full Ubuntu 8.10 on a

10GB double-sided DVD

■ Hard-disk install + Live version

■ Includes 32-bit and 64-bit
versions

 Each DVD with magazine, incl. shipping:
£ 7.99 / 11.99 / US$ 12.99

openSUSE 11.1
■ Hundreds of apps for home,

offi ce, and Internet

■ Hassle-free install with
 advanced hardware detection

■ Latest software

Fedora 10 & Slackware 12.2
■ Two great, new distro releases

on one disc !

■ Explore Fedora 10, including
better WLAN & printer support

■ Check out Slackware 12.2, the
benchmark in Unix look & feel

Issue #98 / January 2009 Issue #100 / March 2009

Issue #99 / February 2009

straceKnow-how

50 ISSUE 103 JUNE 2009

Next, open up the strace output file in

an editor (Figure 1). The output might

look a little intimidating, but don’t worry

about the details yet. Instead, look at the

basic structure of each line. Strace out-

puts each system call as a single line,

with the call name at the start of the

line, its arguments in brackets, and the

return value after the equals sign at the

end of the line. Listing 2 shows the first

lines of strace output.

In your Perl strace, you’ll first see a

line stating what script you’re executing.

The next line (Listing 2) is a call to

uname, showing the details of your sys-

tem. What uname actually returns is a

pointer to the data structure; strace fills

this information in for you. (By default,

it only prints some of the information,

but you can also request more detailed

information.)

Whenever strace encounters a pointer

to a data structure, it gives you the in-

formation pointed at rather than the

pointer itself.

Access Calls
Next you’ll see some access calls, which

attempt to access information in specific

files (see Listing 3). The access call

shows what file the program is trying to

access (e.g., /etc/ld.so.preload) and

whether the attempt was successful. The

-1 means unsuccessful, and the notice of

failure is often accompanied with an

error code (E*****: or in this case,

ENOENT). Then the error code is trans-

01 readlink("/proc/self/exe", "/usr/bin/perl", 4095) = 13

02 getppid() = 3252

03 read(3, "#!/usr/bin/perl -w\n\nuse strict;\n"..., 4096) = 58

Listing 4: Running the Program

01 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

02 open("/etc/ld.so.cache", O_RDONLY) = 3

03 fstat(3, {st_mode=S_IFREG|0644, st_size=43270, ...}) = 0

04 mmap(NULL, 43270, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2b8740901000

05 close(3) = 0

Listing 3: Access Calls

01 execve("./helloworld.pl", ["./helloworld.pl"], [/* 20 vars */]) = 0

02 uname({sys="Linux", node="the.earth.li", ...}) = 0

Listing 2: Example strace Output Lines

01 #!/usr/bin/perl -w

02 use strict;

03 print "Hello, Perl!\n";

Listing 1: helloworld.pl

NO MORE DOWNLOADS!

ORDER TODAY: WWW.LINUX-MAGAZINE.COM/BACKISSUES

Ubuntu 8.10 “Intrepid Ibex”
■ Full Ubuntu 8.10 on a

10GB double-sided DVD

■ Hard-disk install + Live version

■ Includes 32-bit and 64-bit
versions

 Each DVD with magazine, incl. shipping:
£ 7.99 / 11.99 / US$ 12.99

openSUSE 11.1
■ Hundreds of apps for home,

offi ce, and Internet

■ Hassle-free install with
 advanced hardware detection

■ Latest software

Fedora 10 & Slackware 12.2
■ Two great, new distro releases

on one disc !

■ Explore Fedora 10, including
better WLAN & printer support

■ Check out Slackware 12.2, the
benchmark in Unix look & feel

Issue #98 / January 2009 Issue #100 / March 2009

Issue #99 / February 2009

Know-howstrace

lated into plain English; ENOENT means

“no such file or directory.”

If the file does exist, access checks to

see whether the program is allowed to

access it (e.g., if the permissions are cor-

rectly set).

open
As you might expect, open tries to open

the specified file. If that file exists, the

return value is a positive number. This

file descriptor is the “handle” that the

system will use to refer to this file for

subsequent system calls. In the second

article of this two-part series, I’ll look at

the fstat and mmap lines. After these

lines, the file is closed again.

If you look at the open calls farther

down the output, you’ll see that some of

the files are read from, as well. So what

does this section mean? These are all

files that are being loaded before the

program can run, and they all have to do

with the dynamic libraries used on a

Linux system, which I’ll discuss in more

detail my next article. For now, it’s

enough to know that many of these files

and libraries are loaded (or at least

looked for) pretty much any time any file

or program is executed on a Linux sys-

tem. Also, you’ll see a Perl library being

loaded, which is obviously specific to

Perl scripts.

Depending on your system and some

memory-related and thread-related calls,

you’ll see some getuid and getgid calls

after all the calls to libraries. These fetch

the user and group ID

that the process is run-

ning as (which should be

your user ID), and the get-

euid and geteguid calls

fetch the effective user

and group ID (i.e., this re-

cords who actually kicked

the process off and

whether they’re running

it as another user – which

you might do, for exam-

ple, if you used sudo).

Another couple of open

calls are made to system

directories, and then a se-

ries of stat calls, checking

for the whereabouts of

various Perl libraries or

versions. Most of these

will probably send back

-1, which is the return

you get if an error occurs. Perl libraries

can be kept in a lot of places, and they

all get looked through.

The Program!
Finally, I get to the actual program (List-

ing 4)! The first line of Listing 4 searches

for the executable. The /proc/self/exe is a

symbolic link to the executable path; this

data (in this case, the path /usr/bin/perl)

is put in the buffer in the second argu-

ment. The return value is the number of

bytes put into the buffer. In other words,

I’m loading up the path to the execut-

able.

Then I get the process ID; on my sys-

tem, it’s 3252, but it will be something

different on your system. Then, with the

read line, the Perl script itself is read into

memory. That second value is another

example of strace doing some work for

you. The second value in a read call is,

again, a pointer to a buffer where the

data that is read from the file descriptor

is to be put.

The strace program dereferences the

pointer and gets the data out of the buf-

fer for you. In this case, the content of

the buffer is your whole script (only the

first few bytes are shown by default).

The return value is the number of bytes

read into the buffer. The next set of lines

are all looking for the strict Perl module,

and you’ll see the output run through a

set of possible locations (Listing 5).

After it finally gets a successful return

for stat (i.e., a return value of 0 rather

than -1), the module file is opened and

read, as shown in Listing 6. Again, the

return value of that open line – here, it’s

4 – identifies the file for later calls.

Now look at the next few lines – the

first argument for all of them is 4, which

means they’re looking at the /usr/share/

perl/5.8/strict.pm file. The next few lines

deal with seeking through the file, read-

ing it, and then closing it again.

Finally, look at the last little section of

the output (Listing 7). As before, that 3

is a file descriptor. If you look back

through the output, you’ll see that when

the helloworld.pl file was opened, its re-

turn value (its descriptor) was 3.

Again, I am reading the Perl file, but

this time, the return value (remember,

this is the number of bytes read into the

buffer) is 0, and the second value (the

data read in) is an empty string. In other

01 #include<stdio.h>

02

03 main()

04 {

05 printf("Hello World");

06 }

Listing 8: helloworld.c

01 read(3, "", 4096) = 0

02 close(3) = 0

03 write(1, "Hello, Perl!\n", 13) = 13

04 exit_group(0) = ?

05 Process 3253 detached

Listing 7: Last Part of Perl
Output

01 stat("/etc/perl/strict.pmc", 0x7fff6a1bdcb0) = -1 ENOENT (No such file or

directory)

02 stat("/etc/perl/strict.pm", 0x7fff6a1bdb70) = -1 ENOENT (No such file or

directory)

03 ...

04 stat("/usr/share/perl/5.8/strict.pm", {st_mode=S_IFREG|0644, st_size=599, ...})

= 0

Listing 5: Looking for a Perl Module

Figure 1: Strace output in vim.

straceKnow-how

52 ISSUE 103 JUNE 2009

words, this checks that everything really

has been read out of the file before it’s

closed. Now the single actual command

in the program is run in the write line,

and the process is detached.

Right! That was fairly complicated,

but I hope you have an idea of what’s

going on. Now I’ll show you what hap-

pens and what differs when I do the

same thing with a C file.

Strace on C
Listing 8 shows a “Hello World” program

in C. To compile it, type cc -o helloworld

helloworld.c and then check it by typing

./helloworld. Assuming all went well,

you should run strace -o strace_c.out

./helloworld. The strace output is shown

in Listing 9.

The first couple of lines look similar to

the Perl example: an execve call contain-

ing the program name and a uname call.

Also, a couple of access calls to the same

files as before failed (ld.so.nohwcap and

ld.so.preload). In addition, ld.so.cache is

opened, read, and closed, as well. (ld.

so.cache contains a list of possible librar-

ies that have previously been found,

which cuts down on the amount of time

spent searching for libraries in the li-

brary path.)

Also present are the mmap, mprotect,

and arch_prctl calls, as well as munmap.

Because the program itself is the execut-

able, and thus the permissions on it

have already been checked, you won’t

see a check of the user or group ID.

(With Perl, the executable is /usr/bin/

perl – or wherever Perl lives on your

system – so it is necessary to check to

see whether the user has access to that

executable file.)

Because C cleans up its memory after

itself, munmap calls are also in the C

strace output.

In this case, there’s no readlink call

because this is interpreted – not com-

piled – code, so you don’t need to iden-

tify an executable with which to execute

it. The difference between compiled and

interpreted code is also responsible for

the lack of read calls here compared

with the Perl script output. The C code

doesn’t have to be read into memory

and then fed into an interpreter; instead,

it’s run directly.

write Call
What you will see is the write line (List-

ing 10). In both the Perl and the C cases,

what happens eventually is that a write

call is made to output a string (the sec-

ond argument in the method call) to the

screen. In difference the case of Perl is

that this is done via the interpreter,

whereas in the case of C, it’s the pro-

gram itself that makes the call (but you

can’t tell this from the line, just from the

context of it.)

Once again, there’s an exit_group call,

but this time it’s called on the write call

(value 11, in my example), rather than

on the interpreter (value 0), as in the

Perl case.

Conclusion
This quick introduction shows some

basic information that you can learn

from studying system calls with strace.

Also, you might want to try strace out on

a “Hello World” Bash script, or you

could also try running strace on short

commands such as cd or pwd. n

Juliet Kemp has been playing around

with Linux ever since she found out

that it was more fun than Finals revi-

sion and has been a sys admin for

about five years. She finds strace out-

put deeply fascinating, and had great

fun delving into system call man

pages while researching this article.

T
H

E
 A

U
T

H
O

R

01 write(1, "Hello World", 11) = 11

Listing 10: Write Line

01 execve("./helloworld", ["./helloworld"], [/* 20 vars */]) = 0

02 uname({sys="Linux", node="the.earth.li", ...}) = 0

03 brk(0) = 0x501000

04 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

05 mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x2afb0be09000

06 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

07 open("/etc/ld.so.cache", O_RDONLY) = 3

08 fstat(3, {st_mode=S_IFREG|0644, st_size=43270, ...}) = 0

09 mmap(NULL, 43270, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2afb0be0b000

10 close(3) = 0

11 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

12 open("/lib/libc.so.6", O_RDONLY) = 3

13 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\200\305"..., 640) = 640

14 lseek(3, 624, SEEK_SET) = 624

15 read(3, "\4\0\0\0\20\0\0\0\1\0\0\0GNU\0\0\0\0\0\2\0\0\0\6\0\0\0"..., 32) = 32

16 fstat(3, {st_mode=S_IFREG|0755, st_size=1286104, ...}) = 0

17 mmap(NULL, 2344904, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x2afb0bf0a000

18 mprotect(0x2afb0c02b000, 1161160, PROT_NONE) = 0

19 mmap(0x2afb0c12b000, 98304, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_

DENYWRITE, 3, 0x121000) = 0x2afb0c12b000

20 mmap(0x2afb0c143000, 14280, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_

ANONYMOUS, -1, 0) = 0x2afb0c143000

21 close(3) = 0

22 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x2afb0c147000

23 mprotect(0x2afb0c12b000, 86016, PROT_READ) = 0

24 arch_prctl(ARCH_SET_FS, 0x2afb0c1476d0) = 0

25 munmap(0x2afb0be0b000, 43270) = 0

26 fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 51), ...}) = 0

27 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x2afb0be0b000

28 write(1, "Hello World", 11) = 11

29 munmap(0x2afb0be0b000, 4096) = 0

30 exit_group(11) = ?

Listing 9: Complete strace for Hello in C

Know-howstrace

53ISSUE 103JUNE 2009

