

technical expert will tell you

that the kernel is the Linux – the

Hardware Abstraction Layer and

everything else you see on your screen is

mostly application software from the

GNU collection. Linux is the operating

system core that makes a computer us-

able in a Unix-like way. On the technical

level, a kernel consists of the following

basic components:

s฀ SUPPORT฀FOR฀HARDWARE฀AND฀CORRESPOND

ing drivers;

s฀ A฀SO
CALLED฀scheduler, which distrib-

utes available computing power (CPU

cycles) and hardware resources

among application programs,

thus allowing the programs to run in-

dependently of each other without

causing deadlocks or conflicts;

s฀ A฀VIRTUAL฀MEMORY฀AND฀FILESYSTEM฀MAN

ager that makes memory and disk

space available to programs.

Most users just accept the kernel that

comes with their Linux distro without

seriously tinkering with it. However, if

you happen to need a driver or system

component that isn’t built into your

Linux system, or even if you just like tin-

kering, you might one day face the task

of replacing, rebuilding, or extending the

kernel running on your system. In this

article, I describe some techniques for

working with the Linux kernel.

Kernel 2.6.28 is released, and when you

read through the changelogs, you notice

a vast number of bug fixes and feature

enhancements that create an impression

of huge performance and stability bene-

fits with a simple package update. Un-

fortunately, the reality is not quite so

simple. Because of the rapid kernel de-

velopment process, new releases appear

almost every month. Most new releases

do not provide a major change unless

you are looking for something very spe-

cific. And, even if a new component or

subsystem is announced in the news, it

is unlikely that you will find the latest

kernel version ready to install in your

distro’s repository. Most distributions

provide stable and well-tested snapshots

that might contain some selected new

features and improvements of newer re-

leases but keep the old version num-

ber for compatibility with third-

party modules. If you are look-

ing for the newest (and

If you work with third-party hardware drivers, or even if you just need

to fix a broken system, someday you might need to upgrade the Linux

kernel. BY KLAUS KNOPPER

Working with the Kernel

21ISSUE 100MARCH 2009

021-028_knopper-kernel.indd 21 15.01.2009 16:18:30 Uhr

probably not well-tested) version, you

will have to compile the kernel yourself.

Why would anyone even bother to up-

grade the Linux kernel? If you spend a

lot of time hacking your Linux system,

you might find yourself needing to repair

a system that broke because you forgot

to activate an important option. Or, in

some cases, a new kernel might contain

a driver or support a module that offers

improved hardware support. In other sit-

uations, the update might address an ur-

gent security problem.

To find out which kernel is currently

running on your system, open a shell

and type

uname -a

which should output something such as:

Linux eeepc 2.6.26.5-eeepc

#13 PREEMPT Thu Oct 9

04:04:42 CEST 2008 i686

GNU/Linux

Another command

cat /proc/version

provides additional in-

formation on the com-

piler used to build the

kernel.

As you will learn, this

information comes in

handy when you are

working with kernel

modules:

 Linux version

 2.6.26.5-eeepc

 (knopper@Koffer)

 (gcc version 4.3.2

 (Debian 4.3.2-1)

) #13

 PREEMPT Thu Oct 9

04:04:42 CEST 2008

The preceding output reveals several

facts about the system:

s฀ 4HE฀KERNEL฀IS฀IN฀THE฀���฀KERNEL฀SERIES�
s฀ 4HE฀MINOR฀RELEASE฀VERSION฀IS฀���
s฀ 4HE฀PATCH฀LEVEL฀�MOSTLY฀FOR฀BUG฀FIXES	฀

is 5.

s฀)T฀WAS฀PRESUMABLY฀COMPILED฀FOR฀AN฀%EE฀
PC system, although this setting can

be any text string specified as EXTRA-

VERSION in the kernel Makefile.

s฀ 4HE฀SYSTEM฀ARCHITECTURE฀IS฀BASED฀ON฀
i686, which supports the machine in-

struction sets of Pentium 2 and higher,

but not older 386- or 486-based com-

puters.

s฀ 4HE฀'##฀COMPILER฀VERSION฀USED฀WHEN฀
compiling the kernel from its source

was version 4.3.2 on a Debian system.

The resulting binary was the 13th time

the compiler was run for this source,

and the compile was performed on

Thursday October 9, 2008.

s฀ 4HIS฀KERNEL฀IS฀PREEMPTIBLE�฀4HAT฀IS�฀THE฀
system is optimized as a desktop sys-

tem with a quick interactive response

rather than as a compute server.

This detailed information on the state of

the current system provides a starting

point for understanding how to proceed

with a kernel upgrade.

Most Linux distributions provide an easy

means for upgrading the kernel through

a package management system. If you

don’t need a customized or optimized

kernel, updating the kernel through your

distro’s package system is often much

easier than compiling and manually in-

stalling the kernel on your own.

Here, I describe how to upgrade your

kernel through the Debian-based Apti-

tude package management system. The

concepts are similar for other systems. If

your distro uses an alternative package

tool, consult the vendor documentation.

The Debian kernel packages used to

have the name kernel-image. This name

has recently changed to linux-image.

Command-line gourmets will prefer to

install the new kernel image with a text-

based command

aptitude install

linux-image-686

instead of with a GUI-based package

manager; in either case, the steps exe-

cuted are basically the same:

1. The package is decompressed and un-

packed into a new location. The static

part of the kernel goes to /boot/ vlinuz-

versionnumber-architecture; kernel

modules go to /lib/modules/version-

number.

2. Scripts check to see whether an initial

ramdisk is necessary for your system;

if it is, the necessary modules are set

up in a file called /boot/initrd.img-ver-

sionnumber-architecture. The system

tool mkinitramfs is responsible for this

step. Its configuration files are at /etc/

initramfs-tools/*, which is where you

will go to make certain configuration

changes, such as changing the ram-

disk configuration. Unless the module

names have changed, or unless you

plan to activate software RAID or

LVM, you should not have to do much

there on your own.

3. The bootloader is made aware of the

new kernel as a choice for booting.

Unless the old kernel is removed

(which should not happen automati-

cally), it will still be in the bootloader

configuration file, which allows you to

switch back to the old kernel interac-

tively as the system starts.

Before you reboot the system, check the

following:

01 image=/vmlinuz

02 initrd=/initrd.img

03 label=Linux

04 image=/vmlinuz.old

05 initrd=/initrd.img.old

06 label=Linux -old

Listing 1: /etc/ lilo.conf
The kernel has some interactive quali-

ties – you can boot the system with the

use of kernel options that affect the way

some part of the kernel works and even

change certain kernel settings during

run time without rebooting. Technically

oriented users often enjoy just browsing

through the new kernel’s options to look

for new settings to play with.

Kernel Options

Working with the Kernel

22 ISSUE 100 MARCH 2009

021-028_knopper-kernel.indd 22 15.01.2009 16:18:32 Uhr

s฀ $ID฀YOU฀PREVIOUSLY฀HAVE฀TO฀INSTALL฀OR฀
recompile additional kernel modules

for the system to start? In the rare case

that your primary boot medium con-

troller needs a driver that is not part of

the kernel or ramdisk, you will have to

compile and install the necessary

module before you reboot; otherwise,

it might be difficult to get the system

up and running with the new kernel.

s฀)S฀THE฀BOOTLOADER฀CORRECTLY฀PREPARED฀
for the new kernel? For instance, LILO

(the Linux Loader – one of the first

filesystem-independent bootloaders

for Linux) should have entries similar

to Listing 1 in the /etc/lilo.conf file.

If you are using the GRUB bootloader,

the /boot/grub/menu.lst file will need

entries similar to those in Listing 2.

In Listing 1, note that /vmlinuz.old

and /initrd.img.old are symbolic links to

the old but still-existing kernel and initrd

files in /boot. This approach makes it

possible to boot the old kernel if the new

one isn’t working as expected. If you

change /etc/lilo.conf manually, run the

lilo command as root before rebooting,

because the LILO bootloader needs to

update its record of the kernel file loca-

tion. The GRUB bootloader, on the other

hand, can find the files on its own using

its own filesystem driver.

If it seems that your system is ready

for the new kernel, reboot to see that

everything works. If the new kernel

doesn’t start for some reason, select the

old kernel in the boot menu to restore

the previous configuration.

If you feel like tuning up your kernel for

a specific situation, or if you are looking

for features that aren’t present in your

distribution’s kernel default kernel build,

you can always try your luck compiling

the kernel yourself. Start by installing

the C compiler and assembler (the gcc

and the binutils packages). On Debian,

for example, enter

sudo aptitude install

binutils gcc make

then fetch and unpack the kernel source

from kernel.org [1] or one of its mirrors.

An alternative to installing the latest ver-

sion is to obtain the last major release

and apply any subsequent patches:

wget -c http://www.kernel.org/

pub/linux/kernel/v2.6/

linux-2.6.28.tar.bz2

tar jxvf linux-2.6.28.tar.bz2

The next steps depend on whether you

want to change something in your old

kernel configuration or keep everything

as is and just do the upgrade.

After you have unpacked the new ker-

nel source, it is much easier to copy your

old kernel setup to the new directory

first if you don’t plan on making lots of

changes. This strategy saves you having

to go through all the hundreds of options

one by one and guessing which setting

will match your system.

The entire collection of kernel options

and settings is stored in a file called .con-

fig (note the dot at the beginning; the

file is hidden, kind of) inside the kernel

source directory, which is linux-2.6.28/.

config in this example.

In Debian, you can find a copy of the

.config file for your current kernel in the

same directory in which the binary ker-

nel is installed (/boot/config-kernelver-

sion). For other distributions, you might

have to look inside the source package

matching the installed binary kernel

package.

After copying the old kernel configura-

tion to the new source directory, change

into the new kernel source directory,

cd linux-2.6.28

start the kernel configuration, and

browse through all the available options.

Depending on whether you have in-

stalled the Qt3 or Gtk2 toolkit develop-

ment environment, you can compile and

start a graphical kernel configuration

front end with

make xconfig

for a Qt-based environment or

make gconfig

for a Gtk-based environment (Figure 1).

If neither of these commands work

 because development files are missing,

the text-based alternative requires only

the ncurses libraries:

make menuconfig

This command was used to create the

screen shot in Figure 2.

As a last resort,

make config

will always work, but it requires you

to acknowledge each and every kernel

01 title=Linux

02 root (hd0,0)

03 kernel /vmlinuz

04 root=/dev/hda1

05 initrd /initrd.img

06

07 title=Linux-old

08 root (hd0,0)

09 kernel /vmlinuz.old root=/dev/hda1

10 initrd /initrd.img.old

Listing 2:
/boot/ grub/ menu.lst

Working with the Kernel

23ISSUE 100MARCH 2009

021-028_knopper-kernel.indd 23 15.01.2009 16:18:33 Uhr

option one after the other, so this com-

mand is therefore quite tiresome.

Some options are just on/ off (like cer-

tain features that affect the static part of

the kernel); other features allow the user

to compile a driver into the kernel or as

a module that can be loaded from disk

after the initial filesystem is activated.

To compile a kernel that is optimized

for your system, you should investigate

your hardware. My recommendation is

that you compile the hard disk controller

responsible for the boot disk, as well as

THE฀GENERAL฀DISK฀DRIVER฀�)$%�฀3!4!	฀INTO฀
the kernel.

To find out which kernel driver is right

for your hardware, try

lspci -vmm -k

which will also show you the name of

the kernel component or module that

matches a specific chipset.

Usually, it does not hurt to compile

driver modules for hardware you don’t

have (yet). These drivers will just be ig-

nored until new hardware is detected

and Udev, the automatic on-demand

hardware detection system, loads them.

Just watch out for mutually exclusive

drivers. The USB system, for instance,

supports a number of alternative drivers

that aren’t always interchangeable. The

low-performance USB block driver (ub)

is known to kill performance and the

stability of fast USB storage devices that

would otherwise run perfectly with the

alternative usb-storage driver.

During kernel configuration, you will

find a number of options that seem im-

portant but are not really self-explana-

tory. The built-in configuration help file

gives a brief overview (which is not al-

ways helpful); you’ll find more docu-

mentation inside the kernel source

 Documentation directory – the file called

kernel-parameters.txt is especially worth

reading. The safest approach, in any

case, is just to keep the default, which is

the option that works for most hardware

configurations.

After you are done configuring kernel

options, leave the configuration GUI

with Save Changes.

Now you can start the compiler with a

simple

make

which can take some time to complete.

If you rerun this procedure, it is a good

idea to remove old binaries with make

clean before restarting the process.

For some of the more experimental

kernel modules, compilation can fail

with certain kernel and compiler ver-

sions. Unless you are familiar with the C

language and feel ready to change the

source code directly, it is easiest to just

deactivate the offending driver.

After a successful compilation, you

can install the kernel:

s฀ MANUALLY�฀BY฀TYPING฀sudo make install,

which copies arch/i386/boot/bzImage

to /boot/vmlinuz-* and all kernel mod-

ules to /lib/modules/versionnumber/.

To make the bootloader aware of a

new kernel boot option, you still have

to configure lilo.conf (for LILO) or

menu.lst (for GRUB) manually.

s฀ BY฀CREATING฀A฀PACKAGE฀FOR฀YOUR฀DISTRI-
bution and installing that package.

The package manager should take care

of doing all necessary bootloader mod-

ifications and, if necessary, creating an

initial ramdisk file.

For Debian, the package helper for creat-

ing kernel packages is make-kpkg, which

you can invoke inside the kernel source

directory:

make-kpkg --us --uc

--rootcmd fakeroot

kernel_image

Then, install the resulting kernel

 package:

sudo dpkg -i ../

linux-image-kernelversion*.deb

For RPM-based distributions, you will

have to look into the old kernel source

package’s .spec file, modify it for the

new kernel source version, and run rpm

-ba specfile to start the compile and

package creation.

Keep in mind that you will have to

(re-)compile all additional modules that

are not part of the original kernel source.

(Read on for more about working with

Linux kernel modules.)

Before you throw away your old Linux

kernel and upgrade the whole base sys-

tem, keep in mind that Linux offers a

less radical solution for integrating new

drivers and features. Loadable Kernel

Modules (LKM) are bits of executable

code that are not part of the static (base)

Most distributions compile only a mini-

mum subset of drivers directly into the

static kernel then install all available

hardware drivers as modules into the

root filesystem. The drivers necessary

for mounting the root filesystem are

stored inside the initial ramdisk. I per-

sonally prefer going without an initial

ramdisk for hard disk installations and

then compiling the drivers necessary for

hard disk access directly into the kernel.

The same applies for USB drivers that

might be needed at a very early stage of

the boot process (e.g., USB keyboards

and USB storage). If the root filesystem

has been partly damaged and you can’t

load any more drivers from the filesys-

tem, you might still be able to mount ad-

ditional media from an emergency shell

and do system recovery. Also, the boot

process is somewhat simpler without

the intermediate initial ramdisk step, but

that, again, is just a matter of personal

preference.

No Initial Ramdisk?

For some hardware, two alternative driv-

ers might both work fine, but you still

have to choose one of them. IDE hard disk

controllers, for instance, work with both

the traditional IDE block device drivers

and the newer PATA interface, which is

connected to SATA. For controllers that

have both SATA and IDE ports, the SATA/

PATA combination is most likely the best

choice. Enabling both the IDE and SATA/

PATA driver at the same time for the same

controller can sometimes work: As soon

as interrupt and I/ O resources are blocked

by one driver, the other driver silently fails.

Sometimes it does not go so well, and

each driver block parts of the other, so di-

rect memory access (DMA) becomes un-

available, hard disks slow down or disap-

pear, or timeouts and resets occur.

If you decide to use the SATA/ PATA driver

for a hard disk controller instead of the IDE

driver you used before, make sure to

change /dev/hda to /dev/sda in /etc/fstab

because PATA treats IDE hard disks like

SCSI disks. The same precaution applies

to the root=/dev/hda1 lines in the lilo.conf

or menu.lst bootloader files.

Hard Disk Drivers

Working with the Kernel

24 ISSUE 100 MARCH 2009

021-028_knopper-kernel.indd 24 15.01.2009 16:18:33 Uhr

Anzeige
wird
separat
angeliefert

021-028_knopper-kernel.indd 25 15.01.2009 16:18:33 Uhr

kernel but are, instead, loaded separately

at a later stage of the startup process.

Device drivers, file system drivers, and

other custom extensions are often imple-

mented as kernel modules. Keeping the

code in the form of a separate module

eliminates the need for a full system up-

grade just to add a single component.

The kernel provides hundreds of driv-

ers for different hardware, but some-

times, especially with very new note-

books, some drivers (such as WLAN,

LAN, and camera drivers) are only avail-

able in independent projects that have

not managed to get their drivers ac-

cepted into the main-

stream kernel yet. In

other cases, the li-

cense might not sup-

port integration of the

code into the base ker-

nel, or the code was

not tested well enough

to fit the quality stan-

dards of the core ker-

nel development

team. In these situa-

tions, you might need

to obtain the code for

the kernel module and

build it yourself.

Advanced modules

in the form of source

archives can be found at sites such as

SourceForge [2]. MadWifi [3] (for some

popular new WiFi chipsets) and GSPCA

[4] (for webcams) are prominent exam-

ples of kernel modules available online.

Unfortunately, it is sometimes difficult

to compile module source code with the

newest kernels because changes in the

kernel API can cause compilation errors.

Before compiling additional modules,

be aware that, for this task, you need the

exact kernel source that was used for

building the binary kernel that will ac-

cept the new module during run time, as

well as the same GCC compiler that was

used to build that kernel. Under certain

circumstances, it is also possible to load

modules compiled for a (slightly) differ-

ent kernel with insmod -f, but this ap-

proach has the potential to make your

system unstable because certain hard-

ware-specific machine instructions and

symbols inside the kernel won’t match.

If you installed your kernel from your fa-

vorite distribution’s installation resource

(DVD or Internet repositories), chances

are good that you will find the corre-

sponding source there.

The kernel 2.6 Makefile system pro-

vides an easy way to find the right op-

tions to compile additional modules that

work with the kernel – which saves

module developers some work.

As an example of how to compile and

install a kernel module, I will use cloop,

the compressed loopback device, which

I frequently have to recompile for Live

CD systems when upgrading the kernel.

The Cloop source code is available

 online [5]. To unpack the tarball, use:

tar zxvf cloop_2.628-2.tar.gz

After changing into the cloop-2.628

 directory, compile the module with:

make obj-m=cloop.o cloop-objs=

compressed_loop.o -C

If you want to compile a kernel that runs

on a variety of different boards and proces-

sors (or at least *86-compatible variants),

read the processor-specific option help file

carefully and opt for generic optimizations

and conservative settings rather than

speed and processor-specific features. A

kernel compiled for 80386 processors will

run on any recent Pentium or AMD proces-

sor; a kernel compiled for newer proces-

sors will not work on earlier processor

types. The performance advantage of a

processor-specific kernel is rather low

(around 5–8%) because desktop programs

usually make comparably fewer calls to the

processor’s extended features, unless you

are playing a fast game with quick calcula-

tions and high throughput. Even compiling

the kernel for native 64-bit processors

might not be advisable if you plan to run

32-bit applications. Most 64-bit CPUs can

run 32-bit applications, but not vice versa.

The maximum supported memory size can

be a problem: Processors with Physical Ad-

dress Extension (PAE) support can use up

to 64GB of RAM, but a kernel compiled

with PAE will crash immediately on proces-

sors that don’t support it. The safe option

is the 4GB limit, which works for most

32-bit processors, of which only about 3GB

is usable RAM and the rest is for internal

addressing. On machines that will never

have more than 1GB of RAM, the no high

memory support option enables the fastest

memory address scheme.

Options that improve performance and

make the kernel more flexible are all lo-

cated in the processor type and features

section. Here, you can safely select Sym-

metric Multiprocessing (but not necessarily

the SMP/ hyperthreading-optimized sched-

ulers), Preemptible Kernel (Low-Latency

Desktop), and Generic x86 Support (opti-

mizations for an entire processor family).

For all other options, read the help file be-

fore making a change. Some options are

harmless and improve system perfor-

mance under certain circumstances,

whereas others limit the range of proces-

sors on which the kernel will work.

Enabling Symmetric Multiprocessing

(SMP) usually does not hurt, even for old

processors that definitely do not support it.

The kernel checks to see whether or not

the processor can use SMP (or hyper-

threading); if not, single-processor proce-

dures are used. Enabling SMP for non-

SMP systems makes the kernel slightly

larger, but you won’t notice a difference in

performance speed unless you run a very

old or slow computer. Some boards, how-

ever, incorrectly report having a second

processor when, in fact, only one is in-

stalled, creating an SMP-enabled kernel

crash. For these situations, the kernel boot

option nosmp or maxcpus=0 can force sin-

gle-CPU mode. For third-party, binary-only

kernel modules (that probably will have to

be loaded with insmod -f), it might be nec-

essary to run a non-SMP kernel because of

an incompatible instruction API in those

modules.

Fitting the Hardware

Working with the Kernel

26 ISSUE 100 MARCH 2009

021-028_knopper-kernel.indd 26 15.01.2009 16:18:33 Uhr

/mnt/knoppix.build/

Microknoppix/Kernel/

linux-2.6.28 M=`pwd`

This procedure is quite generic and

should work with most module sources.

A Makefile must be present in the mod-

ule source directory, but the file can be

empty if obj-m and modulename-objs are

set as variables on the make command

line. The obj-m=cloop.o statement tells

the kernel Makefile that the module’s

main object is called cloop.o, and

cloop-objs=compressed_loop.c says to

compile the C source file compressed_

loop.c as (only) a component of cloop.

(k)o�฀%VERYTHING฀ELSE฀IS฀HANDLED฀BY฀THE฀
kernel Makefile, located inside the direc-

tory /mnt/knoppix.build/Microknoppix/

Kernel/linux-2.6.28, which was given on

the make command line along with the

-C option. The compilation process is

shown in Listing 3.

Afterwards, the module cloop.ko,

which is ready to be loaded by insmod,

is present in the current directory. Some

modules come with their own Makefile,

which you should try first, but almost

certainly, you will have to specify the

kernel sources location somewhere be-

fore compiling. If no symlink /usr/src/

linux that points to that directory exists,

the command

sudo ln -snf

/path/to/kernel/source

/usr/src/linux

is sometimes helpful if you are tired of

searching for a way to tell a module’s

Makefile where to look for the kernel

source.

If a module source directory is placed

inside another directory called modules

one directory above the kernel-source,

make-kpkg will try to compile the mod-

ule automatically after the kernel and

create a Debian package from it.

Add-on modules should be installed in

the module tree /lib/modules/kernelver-

sion/ (sometimes a subdirectory called

extra is used) and prepared for auto-

matic dependency loading by calling:

depmod -ae

If the current kernel is not the same ver-

sion as the kernel you want to use the

module with, add the kernel version

number as a last command argument.

Now you should be able to load the

module with the modprobe modulename

command.

Watch dmesg for any signs of errors

after module loading. If the module ver-

sion does not match the kernel in use,

you will see the exact error message

there, rather than on the shell where you

started insmod or modprobe. The mes-

sage invalid module format -- symbol ver-

sions mismatch indicates that the mod-

ule was not compiled with kernel source

matching the currently running kernel.

Occasionally a kernel update seems suc-

cessful, yet the system won’t boot after-

wards. Don’t panic (even if your kernel

just did). Figure 3 shows an example of

the output that might appear if your sys-

tem doesn’t start. Before delving into the

details of what to do in this situation, it

is a good idea to review the way a typi-

cal *86-based PC starts up. Before all the

multitasking begins, the system navi-

gates a very linear procedure. Figure 4

shows the five major steps your com-

puter goes through after you switch on

the power. (Step 4 is optional, but most

distributions use it.) The early part of

the process is operating system–indepen-

dent. OS-specific procedures don’t start

until step 3. If something goes wrong

and the system doesn’t start, identifying

the place in the process where the failure

occurred is the first step in uncovering

the source of the problem.

If the BIOS is unable to identify a boot-

able device, the message will say some-

BIOS resets hardware components
BIOS searches for bootable devices
BIOS boot menu (F12)

BIOS loads Bootloader program LILO / GRUB /
ISOLINUX displays menu of operating system kernels
and options; loads kernel into memory, and starts it

Kernel initializes those parts of the
hardware that are supported by
compiled-in drivers

OPTIONAL: Kernel uses a ramdisk initrd-linuxrc
or initramfs-init to load additional modules; start
logical volume management, RAID etc.

First program (init) starts with process number 1
init does system checks and starts services;
login manager

Hardware only accessible through
BIOS routines
No programs running
No file access

Only parts of the hardware known
to the bootloader are accessible;
only kernel files and/or their
locations on disk.

All hardware parts
supported directly by kernel
become usable

More hardware components
become usable by drivers from
ramdisk, disks are logically
restructured

Multitasking, usable system
“User Mode“

S
T

E
P

 1
S
T

E
P

 2
S
T

E
P

 3
S
T

E
P

 4
S
T

E
P

 5

Working with the Kernel

27ISSUE 100MARCH 2009

021-028_knopper-kernel.indd 27 15.01.2009 16:18:34 Uhr

thing like no bootable harddisk found,

hit return to continue. Step 2 failures

usually end with a bootloader message

that says it cannot load the kernel file

from hard disk, which means you mis-

typed the file name in the configuration,

or you forgot to run LILO after changing

lilo.conf, or GRUB does not have the

necessary filesystem plugins available to

find the kernel file on disk. Maybe the

file name is too complicated for the sim-

ple GRUB filesystem implementation, or

again, maybe you mistyped the name or

entered the wrong hard disk in menu.lst.

In Figure 3, step 3 also was apparently

OK because no fatal error message or

freeze occurred during the first hardware

initialization by the kernel. Because the

output doesn’t display an unable to load

ramdisk message, you might think that

step 4 cannot possibly have gone wrong,

but it’s still possible that the ramdisk

loaded by the bootloader into memory

was overwritten when the kernel image

was decompressed into memory. Typi-

cally, this problem occurs when the

static kernel gets too large to fit into

memory before the start of the ramdisk

location (a fixed address for most boot-

loaders), which is the case when the

compressed kernel image exceeds ap-

proximately 2.5MB in size. In this case, I

did not even use a ramdisk; instead, all

drivers necessary to mount the root file-

system are compiled into the kernel.

The boot went fine until step 5, which

is when the kernel should mount the

root filesystem and give control to the

first program, init. Possible reasons for

a problem at this stage might be:

s฀ 4HE฀FILESYSTEM฀TYPE฀NEEDED฀FOR฀ACCESS-
ing the root partition was not com-

piled into the kernel, and it is not pres-

ent as a module inside a ramdisk.

s฀ 4HE฀CONTROLLER฀DRIVER฀FOR฀THE฀HARD฀DISK฀
is not present (which is not the case in

Figure 3).

s฀ 4HE฀WRONG฀ROOT฀PARTITION฀WAS฀GIVEN฀AS฀
a boot argument to the kernel, either

by the bootloader or as a boot com-

mand-line option.

s฀ 4HE฀HARD฀DISK฀IS฀REALLY฀BROKEN฀�OR฀
wrongly configured in the BIOS).

Other causes also could have played a

role in the failure, but the preceding

 alternatives are the most common. If

driver support is missing, either for the

hard disk, the controller, or the filesys-

tem, kernel reconfiguration and recompi-

lation is necessary, which means you

have to reactivate your old kernel first.

If the old kernel is no longer present or

not working, try a Live system from USB

flash or CD/ DVD. From a root shell,

mount the root partition

mount -o dev /dev/sda1

/media/sda1

and do a

chroot /media/sda1

to access the root filesystem as you

would have if the system were able to

boot up directly. From there, you can

mount all partitions

mount -a

and eventually compile a new kernel,

fix the bootloader, and retry. Likely you

don’t want to recompile as root, so just

switch to normal user mode with su -

username. Please don’t forget to re-

mount all mounted partitions – at least

read only, if not unmounting – to force-

write changed data to disk:

umount -arvf

Installing a new kernel is not like install-

ing a new version of OpenOffice, which

will definitely add new features and en-

hancements to your everyday work. New

major releases or experimental kernels

often run slower and less smoothly be-

cause of side effects that have not been

considered by the kernel developers. Un-

like application software, a new kernel

does not necessarily provide better ser-

vice or more possibilities. If your current

kernel is stable and runs smoothly and

you have no sudden system resets,

freezes, or “hangs,” you should have no

reason to believe that a new kernel will

be an enormous improvement.

Unless you experience errors that are

harmful in your usage scenario, just

keep your old kernel and don’t worry

about being up to date. The primary

 reasons for upgrading the kernel are to

correct a problem you are experiencing

or to add new hardware that is not sup-

ported by the current kernel.

If you work with a variety of different

hardware drivers, or even if you have the

need to customize your system for a par-

ticular application or use, the techniques

described in this article will help you get

started with building and upgrading the

Linux kernel. p

[1] Kernel.org: http:// www. kernel. org

[2] SourceForge: http:// sourceforge. net/

[3] MadWifi: http:// madwifi-project. org/

 wiki/ About/ MadWifi

[4] GSPCA: http:// mxhaard. free. fr/

[5] Cloop source code:

http:// debian-knoppix. alioth. debian.

 org/ sources/

INFO

In some situations, another interesting

option is to boot a new kernel directly

from a running Linux system. This op-

tion only works if the running kernel

supports the kexec system call and the

kexec utilities are installed.

kexec --initrd=

/boot/initrd.img-2.6.28

-append="root=/dev/sda1"

-l /boot/vmlinuz-2.6.28

kexec -e

This technique skips steps 1 (BIOS) and

2 (bootloader), loading and starting the

new kernel (and the initial ramdisk)

 directly.

Booting from a Running
Kernel

01 make: Entering directory `/mnt/knoppix.build/Microknoppix/Kernel/linux-2.6.28'

02 LD /mnt/knoppix.build/Microknoppix/Kernel/cloop-2.628/built-in.o

03 CC [M] /mnt/knoppix.build/Microknoppix/Kernel/cloop-2.628/compressed_loop.o

04 LD [M] /mnt/knoppix.build/Microknoppix/Kernel/cloop-2.628/cloop.o

05 Building modules, stage 2.

06 MODPOST 1 modules

07 CC /mnt/knoppix.build/Microknoppix/Kernel/cloop-2.628/cloop.mod.o

08 LD [M] /mnt/knoppix.build/Microknoppix/Kernel/cloop-2.628/cloop.ko

09 make: Leaving directory `/mnt/knoppix.build/Microknoppix/Kernel/linux-2.6.28'

Listing 3: Output

Working with the Kernel

28 ISSUE 100 MARCH 2009

021-028_knopper-kernel.indd 28 15.01.2009 16:18:34 Uhr

