
ver the past several years, the

Linux Kernel Performance Proj-

ect [1] has tracked the perfor-

mance of Linux and tuned it for through-

put and power efficiency on Intel plat-

forms. This experience has given us

some insights into the best tools and

techniques for tuning Linux systems. In

this article, we describe some of our fa-

vorite Linux performance utilities and

provide a real-world example that shows

how the Kernel Performance Project uses

these tools to hunt down and solve a real

Linux performance issue.

The first task in performance tuning

is to identify any bottlenecks that

might be slowing down system per-

formance.

The most common bottlenecks

occur in I/ O, memory management,

or the scheduler. Linux offers a suite

of tools for examining system use and

searching out bottlenecks. Some tools

 reveal the general health of the system,

and other tools offer information about

specific system components.

The vmstat utility offers a useful sum-

mary of overall system performance.

Listing 1 shows vmstat data collected

every two seconds for a CPU-intensive,

multi-threaded Java workload. The first

two columns (r, b) describe how many

processes in the systems can be run if a

CPU is available and how many are

blocked. The presence of both blocked

processes and idle time in the system is

usually a sign of trouble.

The next four columns under memory

show how much memory space is used.

Frequently swapping memory in and out

of the disk swap space slows the system.

The cache column gives the amount of

memory used as a page cache. A bigger

cache means more files cached in mem-

ory. The two columns under io, bi, and

bo, indicate the number of blocks re-

ceived and sent to block devices, respec-

tively, which gives an idea of the level

of disk activity. The two columns under

system, in, and cs, reveal the number of

interrupts and context switches.

If the interrupt rate is too high, you

can use an interrupt utility, like sar, to

help uncover the cause. The command

sar -I XALL 10 1000 will break down the

source of the interrupts every 10 seconds

for 1000 seconds. A high number of con-

Tune up your systems and search out bottlenecks with these handy

performance tools. BY TIM CHEN, ALEX SHI, AND YANMIN ZHANG

01 #vmstat 2

02 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------

03 r b swpd free buff cache si so bi bo in cs us sy id wa

04 7 0 34328 757464 2712 26416 0 0 0 0 12 616773 34 28 37 0

Listing 1: vmstat Output

Performance Tuning Toolbox

30 ISSUE 100 MARCH 2009

030-036_tuning.indd 30 15.01.2009 14:20:22 Uhr

text switches relative to the number of

processes is undesirable because of

flushing of cached data.

The next four columns in Listing 1, us,

sy, id, and wa, indicate the percentage of

time the CPU(s) has spent in userspace

applications, in the kernel, being idle, or

waiting for I/ O, respectively. This output

shows whether the CPUs are doing use-

ful work or whether they are just idling

or being blocked. A high percentage of

time spent in the OS could indicate a

non-optimal system call. Idle time for a

fully loaded system could point to lock

contentions.

Hdparm is a good tool for determining

whether the disks are healthy and con-

figured:

hdparm -tT /dev/sda

/dev/sda:

Timing buffered disk reads:

184 MB in 3.02 seconds =

60.88 MB/sec

Timing cached reads:

11724 MB in 2.00 seconds =

5870.80 MB/sec

The preceding command displays the

speed of reading through the buffer

cache to the disk, with and without any

prior caching of data. The uncached

speed should be somewhat close to the

raw speed of the disk. If this value is too

low, you should check in your BIOS to

see whether the disk mode is configured

properly. Also, you could check the hard

disk parameter setting for an IDE disk

hdparm -I /dev/hda

or for a SCSI disk:

sdparm /dev/sda

To study the health of a run-time

workload’s I/ O, use iostat. For example,

Listing 2 shows how to use iostat for

dumping a workload. If %iowait is high,

CPUs are idle and waiting for outstand-

ing disk I/ O requests. In that case, try

modifying the workloads to use asyn-

chronous I/ O or dedicate a thread to file

I/ O so workload execution doesn’t stop.

The other parameter to check is the

number of queued I/ O requests:

avgqu-sz. This value should be less than

1 or disk I/ O will significantly slow

things down. The %util parameter also

indicates the percentage of time the disk

has requests and is a good indication of

how busy the disk is.

One important way to identify a perfor-

mance problem is to determine how the

system is spending its CPU cycles. The

oprofile utility can help you study the

CPU to this end. Oprofile usually is en-

abled by default. If you compile your

own kernel, then you need to make sure

that the kernel configs CONFIG_

OPROFILE=y and CONFIG_HAVE_

OPROFILE=y are turned on.

The easiest way to invoke oprofile is

with the oprofile GUI that wraps the

01 #iostat -x sda 1

02 avg-cpu: %user %nice %system %iowait %steal %idle

03 0.00 0.00 2.16 20.86 0.00 76.98

04

05 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await

svctm %util

06 sda 17184.16 0.00 1222.77 0.00 147271.29 0.00 120.44 3.08 2.52

0.81 99.01

Listing 2: iostat

01 CPU: Core 2, speed 2400 MHz (estimated)

02 Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit

03 mask of 0x00 (Unhalted core cycles) count 1200000

04 samples % app name symbol name

05 295397 63.6911 cc1 (no symbols)

06 22861 4.9291 vmlinux-2.6.25-rc9 clear_page_c

07 11382 2.4541 libc-2.5.so memset

08 10959 2.3629 genksyms yylex

09 9256 1.9957 libc-2.5.so _int_malloc

10 6076 1.3101 vmlinux-2.6.25-rc9 page_fault

11 5378 1.1596 libc-2.5.so memcpy

12 5178 1.1164 vmlinux-2.6.25-rc9 handle_mm_fault

13 3857 0.8316 genksyms yyparse

14 3822 0.8241 libc-2.5.so strlen

15

Listing 3: Viewing Profile Data with oprofile

Performance Tuning Toolbox

31ISSUE 100MARCH 2009

030-036_tuning.indd 31 15.01.2009 14:20:24 Uhr

command-line options. To do so, use

oprofile 0.9.3 or later for an Intel Core 2

processor and install the oprofile-gui

package. Now invoke

#oprof_start

to bring up the Start profiler screen with

Setup and Configuration tabs (Figure 1).

First, select the Configuration tab. If you

want to profile the kernel, enter the loca-

tion of the kernel image file (that is, the

uncompressed vmlinux file if you com-

pile the kernel from source). Now return

to the Setup tab.

In the Events table, select

the CPU_CLK_UNHALTED

event and the unit mask

 Unhalted core cycles. Note:

Normally, you do not need

to sample the system any

more often than the setting

listed under in the Count

field.

A lower count means that

fewer events will need to

happen before a sample is

taken, thus increasing the

sampling frequency. Now

run the application you

want to profile, and start

oprofile by clicking on the

Start button. When the ap-

plication has stopped run-

ning, click the Stop button.

To view the profile data,

invoke:

#opreport -l

The output for this com-

mand is shown in Listing 3.

Listing 3 shows the per-

centage of CPU time spent

in each application or ker-

nel, and it also shows the

functions that are being ex-

ecuted. This report reveals

the code the system is

spending the most time in,

which should improve per-

formance if you can use this

data as a basis for optimiza-

tion.

If you have collected call

graph information, type the

command

#opreport -c

to obtain the output shown in Listing 4.

Listing 4 shows that this workload has

some very heavy memory allocation ac-

tivity associated with getting free mem-

ory pages and clearing them.

The performance of the system is highly

dependent on the effectiveness of the

cache. Any cache miss will degrade per-

formance and lead to a CPU stall.

Sometimes a cache miss is caused by

frequently used fields located in data

structures that span across the cache

line. Oprofile can diagnose this kind of

problem.

Again, using the Intel Core 2 processor

as an example, choose the event LLC_

MISSES to profile all the L2 cache re-

quests that miss the L2 cache. For the

exact event to use, you should invoke

opcontrol --list-events to read about the

details of each event type available for

your CPU.

Listing 5 shows how to call up a cache

miss profile.

Oprofile is a very versatile tool. By

carefully choosing which events to mon-

01 CPU: Core 2, speed 2400 MHz (estimated)

02 Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00

(Unhalted core cycles) count 1200000

03 samples % image name app name symbol name

04 ---

05 295397 63.6911 cc1 cc1 (no symbols)

06 295397 100.000 cc1 cc1 (no symbols) [self]

07 ---

08 1 0.0044 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 path_walk

09 2 0.0087 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 __alloc_pages

10 2 0.0087 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 mntput_no_expire

11 22922 99.9782 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 get_page_from_freelist

12 22861 4.9291 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 clear_page_c

13 22861 99.7121 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 clear_page_c [self]

14 36 0.1570 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 apic_timer_interrupt

15 24 0.1047 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 ret_from_intr

16 3 0.0131 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 smp_apic_timer_interrupt

17 2 0.0087 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 mntput_no_expire

18 1 0.0044 vmlinux-2.6.25-rc9 vmlinux-2.6.25-rc9 __link_path_walk

19 ---

20 11382 2.4541 libc-2.5.so libc-2.5.so memset

21 11382 100.000 libc-2.5.so libc-2.5.so memset [self]

22 ---

23 10959 2.3629 genksyms genksyms yylex

24 10959 100.000 genksyms genksyms yylex [self]

25

Listing 4: opreport Output

01 #opreport -l

02 CPU: Core 2, speed 1801 MHz (estimated)

03 Counted L2_RQSTS events (number of L2 cache requests) with a unit mask of 0x41

04 (multiple flags) count 90050

05 samples % app name symbol name

06 2803 63.4163 cc1 (no symbols)

07 190 4.2986 vmlinux-2.6.25-rc9-ltop get_page_from_freelist

08 102 2.3077 as (no symbols)

09 60 1.3575 vmlinux-2.6.25-rc9-ltop __lock_acquire

10 53 1.1991 libc-2.7.so strcmp

11 39 0.8824 vmlinux-2.6.25-rc9-ltop unmap_vmas

12 38 0.8597 vmlinux-2.6.25-rc9-ltop list_del

Listing 5: Cache Miss Profile

Performance Tuning Toolbox

32 ISSUE 100 MARCH 2009

030-036_tuning.indd 32 15.01.2009 14:20:24 Uhr

Anzeige
wird
separat
angeliefert

030-036_tuning.indd 33 15.01.2009 14:20:24 Uhr

itor, you can zero in on the CPU opera-

tion that is causing the problem.

A high context switching rate, relative to

the number of running processes, is un-

desirable and could indicate a lock con-

tention problem. To determine the most

contended locks, enable the lock statis-

tics in the kernel, which will give you in-

sight into what is causing the lock con-

tention. To do so, use the lock_stat fea-

ture in 2.6.23 or later kernels. First,

you’ll need to recompile the kernel with

the CONFIG_LOCK_STAT=y option.

Then, before running the workloads,

clear the statistics with:

#echo 0 > /proc/lock_stat

After running the workload, review

the lock statistics with the follow-

ing command:

#cat /proc/lock_stat

The output of the preceding com-

mand is a list of locks in the kernel

sorted by the number of conten-

tions. For each lock, you will see

the number of contentions, as well

as the shortest, maximum, and cu-

mulative wait time for a contention.

In addition, you will see the num-

ber of acquisitions, as well as the

minimum, maximum, and cumula-

tive hold times for a lock. The top

call sites of the lock are also given

to let you locate quickly where in the

kernel the lock occurs.

It is worth noting that the lock statis-

tics infrastructure incurs overhead. Once

you have finished hunting for locks, you

should disable this feature to maximize

performance.

Program throughput that is inconsistent

and sputters, applications that seem to

go to sleep before coming alive, and a lot

of processes under the blocked column

in vmstat are often signs of latency in

the system. LatencyTOP is a new tool

that helps diagnose latency issues.

Starting with the 2.6.25 kernel, you

can compile LatencyTOP support into

the kernel by enabling the CONFIG_

HAVE_LATENCYTOP_SUPPORT=y and

CONFIG_LATENCYTOP=y options in the

kernel configuration. After booting up

the kernel with LatencyTOP capability,

you can trace latency in the workload

with a userspace latency tracing tool

from the LatencyTOP website [2]. To

start, compile the tool, do a make install

of the LatencyTOP program, and run the

following as root:

#./latencytop

The LatencyTOP program’s top screen

(Figure 2) provides a periodic dump of

the top causes that lead to processes

being blocked, sorted by the maximum

blocked time for each cause. Also, you’ll

find information on the percentage of

time a particular cause contributed to

the total blocked time. The bottom

screen provides similar information on

a per-process basis.

Linux provides quick allocation and

deallocation of frequently used objects

in caches called “slabs.” To provide bet-

ter performance, Christopher Lameter

introduced a new slabs manager called

Slub.

However, we found that the scheduler

performance benchmark known as hack-

bench reveals a big difference in run

01 procs -----------memory---------- --swap--- ---io---- --system--- -----cpu-----

02 r b swpd free buff cache si so bi bo in cs us sy id wa st

03 360 0 0 15730644 17980 120336 0 0 0 0 320 140047 0 100 0 0 0

04 327 0 0 15739216 17980 120336 0 0 0 0 322 256259 1 99 0 0 0

05 412 0 0 15743084 17988 120336 0 0 0 16 282 74537 0 100 0 0 0

06 421 0 0 15741076 17988 120336 0 0 0 0 311 51750 0 100 0 0 0

07 334 0 0 15745048 17988 120332 0 0 0 0 295 95434 0 100 0 0 0

08 468 0 0 15747460 17988 120336 0 0 0 0 251 94440 0 100 0 0 0

09 373 0 0 15750844 17988 120336 0 0 0 0 268 104569 0 100 0 0 0

01 procs -----------memory---------- --swap--- ---io---- --system--- -----cpu-----

02 r b swpd free buff cache si so bi bo in cs us sy id wa st

03 360 0 0 15730644 17980 120336 0 0 0 0 320 140047 0 100 0 0 0

04 327 0 0 15739216 17980 120336 0 0 0 0 322 256259 1 99 0 0 0

05 412 0 0 15743084 17988 120336 0 0 0 16 282 74537 0 100 0 0 0

06 421 0 0 15741076 17988 120336 0 0 0 0 311 51750 0 100 0 0 0

07 334 0 0 15745048 17988 120332 0 0 0 0 295 95434 0 100 0 0 0

08 468 0 0 15747460 17988 120336 0 0 0 0 251 94440 0 100 0 0 0

09 373 0 0 15750844 17988 120336 0 0 0 0 268 104569 0 100 0 0 0

Listing 6: Starting with vmstat

Performance Tuning Toolbox

34 ISSUE 100 MARCH 2009

030-036_tuning.indd 34 15.01.2009 14:20:24 Uhr

time with kernel 2.6.24/ 2.6.25-rc, be-

tween a system with 16 CPU cores and a

system with eight CPU cores. Hackbench

is expected to be faster on the 16-core

system than on the 8-core system, but

the testing result shows the first machine

requires three times more run time than

the second machine, which indicates a

possible performance issue.

The vmstat utility provides the output

shown in Listing 6.

Notice the high context switch (cs)

count and large number of running pro-

cesses. In this case, hackbench simulates

many chat rooms with a large number of

users passing messages back and forth

in each room. The lack of idle time in

the system indicates that the CPU is very

busy.

The next step is to use oprofile to find

out where the CPU is spending its time.

The oprofile data in Listing 7 shows that

about 88% of the CPU time is spent in

allocating slabs, adding to partially filled

slabs, and freeing slabs. It shows that

the benchmark generates lots of mes-

sages that are allocated and passed be-

tween processes and memory manage-

ment, and that is where the program is

spending the most time.

This result indicates the need to take a

closer look at what is going on with the

slabs. A utility called slabinfo provides a

report on slab activity. (The source code

for the slabinfo utility is with the kernel

source under Documents/vm/slabinfo.c.)

To obtain information about the most ac-

tively used objects, invoke the slabinfo

utility (see Listing 8).

The block objects, size 192 and 512,

are actively used by hackbench mes-

sages: One is for the socket buffer

header and one is for the message body.

Basically, the SLUB implementation

keeps a per-cpu cache for each slab type.

When the kernel allocates an object, it

checks the per-cpu cache first without

locking. Such allocation is very fast and

is called a fast path. If the per-cpu cache

hasn’t freed objects, the kernel allocates

from shared pages with a lock, which is

01 CPU: Core 2, speed 1602 MHz (estimated)

02 Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask

of 0x00 (Unhalted core cycles) count 100000

03 samples % image name app name symbol name

04 46746994 43.3801 linux-2.6.25-rc4 linux-2.6.25-rc4 __slab_alloc

05 45986635 42.6745 linux-2.6.25-rc4 linux-2.6.25-rc4 add_partial

06 2577578 2.3919 linux-2.6.25-rc4 linux-2.6.25-rc4 __slab_free

07 1301644 1.2079 linux-2.6.25-rc4 linux-2.6.25-rc4 sock_alloc_send_skb

08 1185888 1.1005 linux-2.6.25-rc4 linux-2.6.25-rc4 copy_user_generic_string

09 969847 0.9000 linux-2.6.25-rc4 linux-2.6.25-rc4 unix_stream_recvmsg

10 806665 0.7486 linux-2.6.25-rc4 linux-2.6.25-rc4 kmem_cache_alloc

11 731059 0.6784 linux-2.6.25-rc4 linux-2.6.25-rc4 unix_stream_sendmsg

Listing 7: Studying CPU Usage with oprofile

Performance Tuning Toolbox

35ISSUE 100MARCH 2009

030-036_tuning.indd 35 15.01.2009 14:20:24 Uhr

slow. A slow path means more lock con-

tentions. The free procedure also has a

fast path and a slow path. Because free

uses a distributed lock (page lock) and

the allocation process uses more exclu-

sive locks, allocation by fast path is more

important.

For these two objects, we noted that

the free operation is quite slow; however,

allocation is not fast, either. For example,

for objects of size 512, only 68% of allo-

cation is by fast path, and 7% of free is

by fast path.

To reduce the slow

path allocation, we

could ask for a big-

ger sized slab to in-

crease the per-cpu

object cache. To in-

crease the default

max_order of 1 and

min_objects of 32,

we add slub_max_

order=3 slub_min_

objects=32 to the

kernel boot com-

mand line. This in-

creases the number

of objects that must

fit into one slab for an allocation to be

successful, which will reduce the chance

that the kernel allocates objects by slow

path.

This step improved the throughput

significantly, requiring just one tenth the

time needed in the previous test. By ex-

tensive testing with different slub_min_

objects settings, we found the correlation

between slub_min_objects and the CPU

number.

Mostly, we get the best result with

slum_min_objects=cpu_number*2. If

slum_min_objects is equal to a bigger

value, the result doesn’t provide much

improvement.

At this point, we went back to the

8-core machine and did extensive testing

to confirm our findings. After we dis-

cussed the problem with the SLUB main-

tainers, a patch that scales slub_min_ob-

jects, as a function of the number of CPU

cores, was merged into the Linux kernel.

In this article, we provided a quick tour

of some useful tools for diagnosing com-

mon performance issues. Of course, this

brief introduction is not intended as a

comprehensive description of the perfor-

mance tuning craft, but it should provide

you with a good starting point for dis-

covering and fixing performance bottle-

necks on your Linux systems. p

01 #slabinfo -AD

02 Name Objects Alloc Free %Fast

03 :0000192 3428 80093958 80090708 92 8

04 :0000512 374 80016030 80015715 68 7

05 vm_area_struct 2875 224524 221868 94 20

06 :0000064 12408 134273 122227 98 47

07 :0004096 24 127397 127395 99 98

08 :0000128 4596 57837 53432 97 48

09 dentry 15659 51402 35824 95 64

10 :0000016 4584 29327 27161 99 76

11 :0000080 12784 33674 21206 99 97

12 :0000096 2998 26264 23757 99 93

Listing 8: slabinfo

Power consumption is another aspect of

system performance. Most recent proces-

sors are equipped with processor perfor-

mance states (P-states) and sleep states

(C-states). If the system is not fully loaded,

it is better to switch to a P-state that oper-

ates the processor at a lower frequency

and voltage. If the processor is idle, the

system should switch to a sleep state.

To take advantage of these features, make

sure the BIOS Speed Step and C-state fea-

tures are enabled. To take advantage of

the P-state feature in the CPU, you need to

make sure that a suitable CPU frequency

governor is enabled for the system. To see

what governors are available, use:

cat /sys/devices/system/

cpu/cpu0/cpufreq/

scaling_available_governors

ondemand userspace performance

With the following command, you can

 determine the current governor:

cat /sys/devices/system/

cpu/cpu0/cpufreq/

scaling_governor

The ondemand governor has the best

power-saving characteristics and is typi-

cally recommended, whereas the perfor-

mance governor will put the CPU at the

maximum frequency and voltage. To

switch to the ondemand governor, issue

the following command:

echo ondemand >

/sys/devices/system/cpu/cpu0/

cpufreq/scaling_governor

To take advantage of the CPU C-states,

you need to enable the tickless idle feature

in the kernel. The Linux kernel has a peri-

odic timer tick that wakes up the CPU. This

tick prevents the CPU from going into the

sleep state. With the recent addition of the

tickless idle, the Linux kernel removed this

timer tick, which allows the CPU to sleep

for a longer time in power-saving mode. If

you compile your own kernel, you should

enable the option CONFIG_NO_HZ=y.

The PowerTOP utility [3] is a useful tool for

checking P-state and C-state status in the

system. PowerTOP will show the current

P-state and C-state, report on which appli-

cations wake up the CPU, and provide ad-

ditional power-saving hints tailored to

your system.

Additional power-saving tips can be found

at the Less Watts website [4].

Power Performance

Tim Chen is a staff engineer of the

Open Source Technology Center at

Intel Corporation. His current focus is

mainly on Linux performance. Before

working at Intel, he worked at Trillium

Digital Systems on telecommunica-

tions systems and at Hughes Space

and Communications on mobile sat-

ellite systems. He graduated from

UCLA in 1995 with a Ph.D. degree in

Electrical Engineering.

Alex Shi joined Intel’s Open Source

Technology as a software engineer in

2005. He works on Linux performance

and power tuning.

Yanmin Zhang, from Open Source

Technology Center of Intel Corpora-

tion, has worked on Linux projects for

five years, including processor and

chipset enabling, which cover Intel

i386, x86-64, and Itanium architec-

tures and PCI-Express. He is currently

working on the Linux Kernel Perfor-

mance project. Before joining Intel,

Yanmin worked for Bell Labs Lucent

Technology on network management

system development.

T
H

E
 A

U
T

H
O

R
S

[1] Linux Kernel Performance Project:

http:// kernel-perf. sourceforge. net

[2] LatencyTOP: http:// www. latencytop.

 org/ index. php

[3] PowerTOP: http:// www. lesswatts.

 org/ projects/ powertop

[4] Less Watts:

http:// www. lesswatts. org/

INFO

Performance Tuning Toolbox

36 ISSUE 100 MARCH 2009

030-036_tuning.indd 36 15.01.2009 14:20:25 Uhr

