
f you want a piece of software to ex-

ecute a task in parallel, the first chal-

lenge is to split that task into mean-

ingful subtasks, which the computer can

then processes simultaneously. Libraries

such as OpenMP help programmers

achieve this kind of parallelization.

Bash scripts typically don’t handle nu-

meric problems, so most programmers

don’t think of a bash script as a candi-

date for parallelization. The venerable

bash shell, however, is used for other

types of jobs that lend themselves to a

parallel approach. For instance, a bash

script is often employed as a tool for pro-

cessing multiple files in the same way.

Listing 1 shows a shell function that

processes all the arguments in the script

one by one and passes the results to a

program (doSomething). In this scenario,

it is easy to imagine the benefits of some

parallel-processing techniques.

Minimal changes to the code in Listing 1

produces the parallel-processing alterna-

tive shown in Listing 2. Listing 2 starts a

You don’t need a heavy numeric mystery to benefit from the wonders of parallel processing. This article

describes some simple techniques for parallelizing everyday bash scripts. BY BERNHARD BABLOK

Before you start parallelizing all your bash

scripts, it makes sense to consider whether

it is indeed meaningful and achievable.

Surprisingly, this question is fairly easy to

answer. The sar u P ALL 1 0 command can

help you decide. (The sar utility is a part of

the sysstat package.)

To run the test, launch your bash script in a

second console. The sar command outputs

the CPU load for all of your system CPUs

(Figure 1).

In addition to the %idle value, the %iowait

value is of interest. The %iowait value

shows whether the processing has

stopped because the system is waiting for

I/ O or some other reason.

The sar values make it easier to make a de-

cision: Parallelization is only worthwhile if

some of your processors are waiting while

others are gasping for breath (as shown in

Figure 1). Typical applications in this cate-

gory are image and music conversions that

generate a fair amount of CPU load, or log-

file parsing scripts that use complex regu-

lar expressions. I/ O-linked processes are

not good candidates. Although you can

parallelize the copying of 200 files from

one directory to another, this strategy will

not result in significant time savings if the

disk is the bottleneck rather than the CPU.

Typically, if the processing steps depend

on one another or if the processing order is

important, you will have no viable alterna-

tive to a sequential order. A different algo-

rithm might help, but the parallel approach

proposed in this article will not result in a

significant benefit.

Additionally, administrators should re-

member that it does not always make

sense to fully load a computer. If you need

to carry on with your daily chores (mailing,

Internet, composing texts, and so on) while

running CPU-intensive jobs, remember

that sequential processing in the back-

ground, which only occupies one core,

might be better than a fast alternative that

blocks the whole system.

Does It Make Sense?

Parallel Bash

56 ISSUE 100 MARCH 2009

056-059_bashscript.indd 56 15.01.2009 16:19:12 Uhr

separate process for each argument. In

line 6, the script waits for its child pro-

cesses to terminate. This approach can

cause problems: If the system is stressed

by excessively large numbers of pro-

cesses, the overhead will increase be-

cause of many context changes. In envi-

ronments with limited memory, you also

might see the machine slow to a crawl

as it swaps individual processes. In some

situations, however, this simple ap-

proach to parallelization makes sense.

Listing 2a is a variant on Listing 2. In

this case, the arguments are not known;

instead, a separate process (create-

WorkItems) creates them sequentially –

this could be a find that is run against a

very large filesystem. If the generating

and processing rates, which depend on

the number of available processors, are

approximately the same, you will not

 experience system overload. If this is not

the case, you will need a more elaborate

solution. The script in Listing 3 distrib-

utes the arguments depending on the

number of processors and then processes

the subsets sequen-

tially. Line 1 of the

script determines the

number of processors

(PMAX) for the sys-

tem. If the process is

heavy on the I/ O, it

might make sense to

set the number of

processes to a value

greater than PMAX to

allow one process to

work while another

is waiting for I/ O.

Unfortunately,

bash only uses sin-

gle-dimensional ar-

rays, which makes

the construct in lines 6 and 13 slightly

complicated. For each process, the script

creates a long string containing the argu-

ments for the process within an array

 element (lines 5 through 9). The script

then launches PMAX parallel processes

(lines 11 through 14). Line 12 prevents

empty processing (e.g., in the case of

just two arguments on a quadcore ma-

chine), and eval in line 12 makes sure

that the shell interprets the quotes in

line 6 correctly.

The scheme shown in Listing 3 is opti-

mal if the average processing time per

item is not subject to major fluctuation.

Unfortunately, you can’t always rely on

this. For example, if you are converting

multiple tracks, an unfavorable distribu-

tion of long and short tracks could mean

that some processes finish sooner than

others. Another situation in which this

approach might be a problem is the task

of converting images from digital cam-

eras. Some cameras create JPG or

thumbnail files in addition to RAW files.

If every other file uses the RAW format

and has to be converted, half of the con-

version processes will finish significantly

sooner because the processing scheme

assigns all the RAW files to one process

and all the JPG files to the other.

The processing method in Listing 3 also

suffers in cases in which not all arguments

are known in advance. If the arguments

generated later in the script occur in se-

quence, it would not make sense to wait

for them all to be created and then distrib-

ute them over the processes.

The solution for this problem is to use

worker processes and a dynamic dis-

patcher. In this scenario, the script

launches a number of worker processes.

01 ${PMAX:=`ls 1d /sys/devices/system/cpu/cpu* | wc l`}

02

 03 doParallel() {

04 local items item currentProcess=0

05 for item in "$@" do

06 items[$currentProcess]="${items[$currentProcess]} \"$item\""

07 shift

08 let currentProcess=$(((currentProcess+1)%PMAX))

09 done

10

 11 for ((currentProcess=0 currentProcess<PMAX currentProcess++)) do

12 [n "${items[$currentProcess]}"] &&

 eval doSequentiell ${items[$currentProcess]} &

13 done

14 wait

15 }

Listing 3: Parallel with Load Balancing

01 doMassiveParallel2() {

02 local item

03 while read item do

04 doSomething "$item" &

05 done

06 wait

07 }

08

 09 createWorkItems | doMassiveParallel

Listing 2a: Serial Input
Parallel

01 doMassiveParallel() {

02 local item

03 for item in "$@" do

04 doSomething "$item" &

05 done

06 wait

07 }

Listing 2: Massively Parallel
Processing

01 doSeriell() {

02 local item

03 for item in "$@" do

04 doSomething "$item"

05 donexyyyyyyyyy

06 }

Listing 1: Serial Processing

Parallel Bash

57ISSUE 100MARCH 2009

056-059_bashscript.indd 57 15.01.2009 16:19:13 Uhr

A dispatcher accepts tasks and distrib-

utes them as intelligently as possible to

the workers. In contrast to the parallel

solutions described earlier, in which all

worker processes need to receive all

their arguments at the start, the dis-

patcher talks to the workers after they

have launched.

Named pipes or FIFOs are used as

communications channels. To begin, the

dispatcher opens a pipe for each worker

and sends new tasks to the pipe (Figure

2). Another pipe that is shared by the

dispatcher and the workers is used as

the return channel. If a worker has noth-

ing to do, it writes its ID to the pipe. The

dispatcher reads an ID from the pipe

after each task and sends the next task

to this worker.

Listing 4 shows an implementation of

this concept. In lines 1 to 4, the program

sets a number of constants, if this has

not already happened. Normally, the

user will only define the _cmd variable.

The dispatchWork function in lines 54 to

72 is the public part of the interface. The

function starts by creating a temporary

directory for all the pipes in line 55 (re-

ferred to as controlDir in the script). The

mkfifo command in line 58 sets up the

return channel.

Line 59 needs some explanation. Here,

the shell opens the return channel for

reading and writing, although read-only

access is all it really needs. The problem

is that read-only access to a pipe blocks

the system call. A similar problem

 occurs in the startWorker() function,

which creates a pipe for each worker

process (line 37) and opens it for reading

and writing (line 40).

The additional eval in line 40 is neces-

sary because the bash parser processes

the input redirection at a very early stage

– before the variable substitution. (This

also explains the backslashes before the

lesser than and greater than symbols.)

Listing 4 simply contains functions –

other scripts include this file and then

use the dispatchWork function (see List-

ing 5).

The script in Listing 4 has a couple of

minor issues to contend with: For exam-

ple, a kill command would leave or-

phaned worker processes (although this

001 ${DEBUG:=0}

002 ${_cmd:=echo}

003 ${PMAX:=`ls 1d /sys/devices/system/cpu/cpu* | wc l`}

004 ${FDOFF:=4}

005

 006 processWorkItem() {

007 eval $_cmd \"$1\"

008 }

009

 010 processWorkItems() {

011 local line workerFifo="$1" dispatcherFifo="$2" id="$3"

fd

012 exec 3<>"$dispatcherFifo"

013 while ! echo "$id" >&3 do

014 sleep 1

015 done

016 let fd=id+FDOFF

017 while true do

018 read r u $fd line

019 if [$? ne 0] then

020 break

021 fi

022 if ["$line" = "EOF"] then

023 break

024 else

025 processWorkItem "$line"

026 while ! echo "$id" >&3 do

027 sleep 1

028 done

029 fi

030 done

031 rm f "$workerFifo"

032 }

033

 034 startWorker() {

035 local i fd fifo

036 for ((i=0 i<PMAX ++i)) do

037 workerFifo="$controlDir/worker$i"

038 mkfifo "$workerFifo"

039 let fd=i+FDOFF

040 eval exec $fd\<\> "$workerFifo"

041 processWorkItems "$workerFifo" "$dispatcherFifo" "$i"

&

042 done

043 }

044

 045 stopWorker() {

046 local i fifo

047 for ((i=0 i<PMAX ++i)) do

048 fifo="$controlDir/worker$i"

049 echo "EOF" > "$fifo"

050 done

051 wait

052 }

053

 054 dispatchWork() {

055 local idleId dispatcherFifo controlDir=`mktemp d`

056

 057 dispatcherFifo="$controlDir/dispatcher"

058 mkfifo "$dispatcherFifo"

059 exec 3<>"$dispatcherFifo"

060

 061 startWorker

062

 063 while read r u 0 line do

064 read u 3 idleId

065 echo "$line" >> "$controlDir/worker$idleId"

066 done

067

 068 stopWorker

069

 070 rm f "$dispatcherFifo"

071 rm fr "$controlDir"

072 }

Listing 4: Dynamic Dispatcher

Parallel Bash

58 ISSUE 100 MARCH 2009

056-059_bashscript.indd 58 15.01.2009 16:19:13 Uhr

problem could be handled by a timeout

variable). Also, if you have more than

six processes, the script will use file de-

scriptors (channel numbers) that are

greater than 9. According to the bash

manual, you have to be “careful” with

this – whatever that means – because

bash might already be using these de-

scriptors for internal purposes. As a

workaround, you can modify the offset

for the channel numbers (line 4).

Other implementations are possible.

For example, the dispatcher and workers

could use files to communicate. The dis-

patcher would then write tasks to

worker-specific files. Workers would use

polling to see whether their worker files

exist, process the tasks defined in the

files, and then delete the files. At the

other end, the dis-

patcher would check

for worker files that are

missing and thus

would know which

workers are idle.

Of course, this solu-

tion is typically ineffi-

cient because of the

need for continuous

polling.

A longer version of

Listing 4 is available at

the Linux Magazine

website [1]. This expanded version sup-

ports calls to dispatchWork at the com-

mand line:

$ dispatchWork c

"doSomething" file1 file2 [...]

The longer version also includes com-

ments and some switches for optional

debug output that allow administrators

to monitor scripts.

If you aren’t satisfied with the efficien-

cies of parallel processing on a local ma-

chine, you can even apply this principle

to the network. In that case, a first-level

dispatcher could use TCP/ IP to talk to

multiple second-level dispatchers on

 various machines. The second-level dis-

patchers then talk to their local worker

processes. This approach is only useful

if you have a secure network, of course.

With just a couple of lines of code, you

can use the techniques described in this

article to parallelize existing shell

scripts. Other scripting languages can

use this approach; however, some lan-

guages offer superior alternatives. For

example, Python uses explicit forking

(os.fork()) in addition to pipes (os.

pipe()), which allows for a low-level so-

lution that is very close to the efficiency

Bernhard Bablok manages a large

data warehouse with technical perfor-

mance data for machines ranging

from mainframes to servers at Allianz

Shared Infrastructure Services. Be-

sides listening to music, hiking, and

biking, Bernhard enjoys anything re-

lated to Linux and object-oriented

programming.

T
H

E
 A

U
T

H
O

R
[1] Dynamic dispatcher source code:

http:// www. linux-magazine. com/

 resources/ article_code

INFO

For two benchmark programs, I used the

dynamic dispatcher approach described in

this article. In the first scenario, the script

converts 20 RAW files to TIFF format on an

Intel Quadcore machine (Q9450 with a

clock speed of 2.67GHz and a 2x 6MB L2

cache).

If you pass all the files to ufrawbatch at

once, the program takes 132 seconds (iter-

ating autonomously over all the files). The

dynamic dispatcher and PMAX = 12 and

PMAX = 4 reduced the run time from 134

to 68 and 35 seconds. The efficiency of this

method with four processors is thus ap-

proximately 95 percent, or to put it differ-

ently, the run time is reduced to almost a

quarter.

The difference between this scenario and

static parallelization is marginal. The rea-

son for this small difference is that all of

the source files are approximately the

same size, so all the processors are equally

stressed.

The second scenario uses another CPU-in-

tensive method to convert WAV files to

MP3, but with more difficult conditions this

time. The script reads and writes the files

from and to an NFS server with a 100MB

network connection. Some interesting ob-

servations I made regarding this scenario

are that, first, the method scales nicely

(with run times of 207, 107, and 55 seconds

– that is, 94 percent efficiency for four pro-

cessors).

Also, the second run, in which the source

files were in the NFS server’s cache, dif-

fered only slightly compared with the local

test. Finally, the use of five worker pro-

cesses rather than four achieves slightly

better results.

The effect of additional worker processes

is more pronounced in the case of “nar-

rower” data lines. However, sorting the

WAV files in descending order of size had a

more pronounced effect on throughput. At

the end of processing, only one processor

was still working on the last file, and this

had a disproportionate effect on the run

time. More optimization is possible, but

enough is enough. In the case of complex

simulations with run times of several hours

or days, you would definitely want to ex-

periment with additional optimization.

The energy balance of a computer working

at full load is slightly better than that of a

machine involved in sequential processing

with just one core. However, you can save

more power by switching off your screen

while your computer is busy with complex

processing work.

Benefits

001 source workDispatcher

002 doDynamic() { _cmd="doSomething" local item for item in "$@"

do echo "$item" done | dispatchWork }

Listing 5: Dispatcher at Work

Dispatcher

Worker

Task Pipe

Return Channel

PID

1234

PID

5678

PID

5432

5432

Task Pipe

processed

Parallel Bash

59ISSUE 100MARCH 2009

056-059_bashscript.indd 59 15.01.2009 16:19:14 Uhr

