
f you want a piece of software to ex-

ecute a task in parallel, the first chal-

lenge is to split that task into mean-

ingful subtasks, which the computer can 

then processes simultaneously. Libraries 

such as OpenMP help programmers 

achieve this kind of parallelization.

Bash scripts typically don’t handle nu-

meric problems, so most programmers 

don’t think of a bash script as a candi-

date for parallelization. The venerable 

bash shell, however, is used for other 

types of jobs that lend themselves to a 

parallel approach. For instance, a bash 

script is often employed as a tool for pro-

cessing multiple files in the same way.

Listing 1 shows a shell function that 

processes all the arguments in the script 

one by one and passes the results to a 

program (doSomething). In this scenario, 

it is easy to imagine the benefits of some 

parallel-processing techniques.

Minimal changes to the code in Listing 1 

produces the parallel-processing alterna-

tive shown in Listing 2. Listing 2 starts a 
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Before you start parallelizing all your bash 

scripts, it makes sense to consider whether 

it is indeed meaningful and achievable. 

Surprisingly, this question is fairly easy to 

answer. The sar u P ALL 1 0 command can 

help you decide. (The sar utility is a part of 

the sysstat package.) 

To run the test, launch your bash script in a 

second console. The sar command outputs 

the CPU load for all of your system CPUs 

(Figure 1). 

In addition to the %idle value, the %iowait 

value is of interest. The %iowait value 

shows whether the processing has 

stopped because the system is waiting for 

I/ O or some other reason.

The sar values make it easier to make a de-

cision: Parallelization is only worthwhile if 

some of your processors are waiting while 

others are gasping for breath (as shown in 

Figure 1). Typical applications in this cate-

gory are image and music conversions that 

generate a fair amount of CPU load, or log-

file parsing scripts that use complex regu-

lar expressions. I/ O-linked processes are 

not good candidates. Although you can 

parallelize the copying of 200 files from 

one directory to another, this strategy will 

not result in significant time savings if the 

disk is the bottleneck rather than the CPU.

Typically, if the processing steps depend 

on one another or if the processing order is 

important, you will have no viable alterna-

tive to a sequential order. A different algo-

rithm might help, but the parallel approach 

proposed in this article will not result in a 

significant benefit.

Additionally, administrators should re-

member that it does not always make 

sense to fully load a computer. If you need 

to carry on with your daily chores (mailing, 

Internet, composing texts, and so on) while 

running CPU-intensive jobs, remember 

that sequential processing in the back-

ground, which only occupies one core, 

might be better than a fast alternative that 

blocks the whole system.

Does It Make Sense?
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separate process for each argument. In 

line 6, the script waits for its child pro-

cesses to terminate. This approach can 

cause problems: If the system is stressed 

by excessively large numbers of pro-

cesses, the overhead will increase be-

cause of many context changes. In envi-

ronments with limited memory, you also 

might see the machine slow to a crawl 

as it swaps individual processes. In some 

situations, however, this simple ap-

proach to parallelization makes sense.

Listing 2a is a variant on Listing 2. In 

this case, the arguments are not known; 

instead, a separate process (create-

WorkItems) creates them sequentially – 

this could be a find that is run against a 

very large filesystem. If the generating 

and processing rates, which depend on 

the number of available processors, are 

approximately the same, you will not 

 experience system overload. If this is not 

the case, you will need a more elaborate 

solution. The script in Listing 3 distrib-

utes the arguments depending on the 

number of processors and then processes 

the subsets sequen-

tially. Line 1 of the 

script determines the 

number of processors 

(PMAX) for the sys-

tem. If the process is 

heavy on the I/ O, it 

might make sense to 

set the number of 

processes to a value 

greater than PMAX to 

allow one process to 

work while another 

is waiting for I/ O.

Unfortunately, 

bash only uses sin-

gle-dimensional ar-

rays, which makes 

the construct in lines 6 and 13 slightly 

complicated. For each process, the script 

creates a long string containing the argu-

ments for the process within an array 

 element (lines 5 through 9). The script 

then launches PMAX parallel processes 

(lines 11 through 14). Line 12 prevents 

empty processing (e.g., in the case of 

just two arguments on a quadcore ma-

chine), and eval in line 12 makes sure 

that the shell interprets the quotes in 

line 6 correctly.

The scheme shown in Listing 3 is opti-

mal if the average processing time per 

item is not subject to major fluctuation. 

Unfortunately, you can’t always rely on 

this. For example, if you are converting 

multiple tracks, an unfavorable distribu-

tion of long and short tracks could mean 

that some processes finish sooner than 

others. Another situation in which this 

approach might be a problem is the task 

of converting images from digital cam-

eras. Some cameras create JPG or 

thumbnail files in addition to RAW files. 

If every other file uses the RAW format 

and has to be converted, half of the con-

version processes will finish significantly 

sooner because the processing scheme 

assigns all the RAW files to one process 

and all the JPG files to the other.

The processing method in Listing 3 also 

suffers in cases in which not all arguments 

are known in advance. If the  arguments 

generated later in the script occur in se-

quence, it would not make sense to wait 

for them all to be created and then distrib-

ute them over the processes.

The solution for this problem is to use 

worker processes and a dynamic dis-

patcher. In this scenario, the script 

launches a number of worker processes. 

01   ${PMAX:=`ls 1d /sys/devices/system/cpu/cpu* | wc l`}

02

 03  doParallel() {

04    local items item currentProcess=0

05    for item in "$@" do

06      items[$currentProcess]="${items[$currentProcess]} \"$item\""

07       shift

08      let currentProcess=$(( (currentProcess+1)%PMAX ))

09    done

10

 11    for (( currentProcess=0 currentProcess<PMAX currentProcess++ )) do

12       [ n "${items[$currentProcess]}" ] &&

        eval doSequentiell ${items[$currentProcess]} &

13     done

14   wait

15  }

Listing 3: Parallel with Load Balancing

01  doMassiveParallel2() {

02    local item

03    while read item do

04    doSomething "$item" &

05  done

06  wait

07  }

08

 09  createWorkItems | doMassiveParallel

Listing 2a: Serial Input 
Parallel

01  doMassiveParallel() {

02    local item

03    for item in "$@" do

04      doSomething "$item" &

05     done

06   wait

07  }

Listing 2: Massively Parallel 
Processing

01  doSeriell() {

02   local item

03   for item in "$@" do

04    doSomething "$item"

05   donexyyyyyyyyy

06  }

Listing 1: Serial Processing
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A dispatcher accepts tasks and distrib-

utes them as intelligently as possible to 

the workers. In contrast to the parallel 

solutions described earlier, in which all 

worker processes need to receive all 

their arguments at the start, the dis-

patcher talks to the workers after they 

have launched.

Named pipes or FIFOs are used as 

communications channels. To begin, the 

dispatcher opens a pipe for each worker 

and sends new tasks to the pipe (Figure 

2). Another pipe that is shared by the 

dispatcher and the workers is used as 

the return channel. If a worker has noth-

ing to do, it writes its ID to the pipe. The 

dispatcher reads an ID from the pipe 

after each task and sends the next task 

to this worker. 

Listing 4 shows an implementation of 

this concept. In lines 1 to 4, the program 

sets a number of constants, if this has 

not already happened. Normally, the 

user will only define the _cmd variable. 

The dispatchWork function in lines 54 to 

72 is the public part of the interface. The 

function starts by creating a temporary 

directory for all the pipes in line 55 (re-

ferred to as controlDir in the script). The 

mkfifo command in line 58 sets up the 

return channel.

Line 59 needs some explanation. Here, 

the shell opens the return channel for 

reading and writing, although read-only 

access is all it really needs. The problem 

is that read-only access to a pipe blocks 

the system call. A similar problem 

 occurs in the startWorker() function, 

which creates a pipe for each worker 

process (line 37) and opens it for reading 

and writing (line 40).

The additional eval in line 40 is neces-

sary because the bash parser processes 

the input redirection at a very early stage 

– before the variable substitution. (This 

also explains the backslashes before the 

lesser than and greater than symbols.)

Listing 4 simply contains functions – 

other scripts include this file and then 

use the dispatchWork function (see List-

ing 5).

The script in Listing 4 has a couple of 

minor issues to contend with: For exam-

ple, a kill command would leave or-

phaned worker processes (although this 

001  ${DEBUG:=0}

002  ${_cmd:=echo}

003  ${PMAX:=`ls 1d /sys/devices/system/cpu/cpu* | wc l`}

004  ${FDOFF:=4}

005

 006  processWorkItem() {

007    eval $_cmd \"$1\"

008  }

009

 010  processWorkItems() {

011    local line workerFifo="$1" dispatcherFifo="$2" id="$3" 

fd

012    exec 3<>"$dispatcherFifo"

013    while ! echo "$id" >&3 do

014      sleep 1

015    done

016    let fd=id+FDOFF

017    while true do

018      read r u $fd line

019      if [ $? ne 0 ] then

020        break

021      fi

022      if [ "$line" = "EOF" ] then

023        break

024      else

025        processWorkItem "$line"

026        while ! echo "$id" >&3 do

027          sleep 1

028        done

029      fi

030    done

031    rm f "$workerFifo"

032  }

033

 034  startWorker() {

035    local i fd fifo

036    for (( i=0 i<PMAX ++i )) do

037      workerFifo="$controlDir/worker$i"

038      mkfifo "$workerFifo"

039      let fd=i+FDOFF

040      eval exec $fd\<\> "$workerFifo"

041      processWorkItems "$workerFifo" "$dispatcherFifo" "$i" 

&

042    done

043  }

044

 045  stopWorker() {

046    local i fifo

047    for (( i=0 i<PMAX ++i )) do

048      fifo="$controlDir/worker$i"

049      echo "EOF" > "$fifo"

050    done

051    wait

052  }

053

 054  dispatchWork() {

055    local idleId dispatcherFifo  controlDir=`mktemp d`

056

 057    dispatcherFifo="$controlDir/dispatcher"

058    mkfifo "$dispatcherFifo"

059    exec 3<>"$dispatcherFifo"

060

 061    startWorker

062

 063    while read r u 0 line do

064     read u 3 idleId

065     echo "$line" >>   "$controlDir/worker$idleId"

066    done

067

 068    stopWorker

069

 070    rm f "$dispatcherFifo"

071    rm fr "$controlDir"

072  }

Listing 4: Dynamic Dispatcher
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problem could be handled by a timeout 

variable). Also, if you have more than 

six processes, the script will use file de-

scriptors (channel numbers) that are 

greater than 9. According to the bash 

manual, you have to be “careful” with 

this – whatever that means – because 

bash might already be using these de-

scriptors for internal purposes. As a 

workaround, you can modify the offset 

for the channel numbers (line 4).

Other implementations are possible. 

For example, the dispatcher and workers 

could use files to communicate. The dis-

patcher would then write tasks to 

worker-specific files. Workers would use 

polling to see whether their worker files 

exist, process the tasks defined in the 

files, and then delete the files. At the 

other end, the dis-

patcher would check 

for worker files that are 

missing and thus 

would know which 

workers are idle. 

Of course, this solu-

tion is typically ineffi-

cient because of the 

need for continuous 

polling.

A longer version of 

Listing 4 is available at 

the Linux Magazine 

website [1]. This expanded version sup-

ports calls to dispatchWork at the com-

mand line:

$ dispatchWork c 

"doSomething" file1 file2 [...]

The longer version also includes com-

ments and some switches for optional 

debug output that allow administrators 

to monitor scripts.

If you aren’t satisfied with the efficien-

cies of parallel processing on a local ma-

chine, you can even apply this principle 

to the network. In that case, a first-level 

dispatcher could use TCP/ IP to talk to 

multiple second-level dispatchers on 

 various machines. The second-level dis-

patchers then talk to their local worker 

processes. This approach is only useful 

if you have a secure network, of course.

With just a couple of lines of code, you 

can use the techniques described in this 

article to parallelize existing shell 

scripts. Other scripting languages can 

use this approach; however, some lan-

guages offer superior alternatives. For 

example, Python uses explicit forking 

(os.fork()) in addition to pipes (os.

pipe()), which allows for a low-level so-

lution that is very close to the efficiency 
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INFO

For two benchmark programs, I used the 

dynamic dispatcher approach described in 

this article. In the first scenario, the script 

converts 20 RAW files to TIFF format on an 

Intel Quadcore machine (Q9450 with a 

clock speed of 2.67GHz and a 2x 6MB L2 

cache).

If you pass all the files to ufrawbatch at 

once, the program takes 132 seconds (iter-

ating autonomously over all the files). The 

dynamic dispatcher and PMAX = 12 and 

PMAX = 4 reduced the run time from 134 

to 68 and 35 seconds. The efficiency of this 

method with four processors is thus ap-

proximately 95 percent, or to put it differ-

ently, the run time is reduced to almost a 

quarter.

The difference between this scenario and 

static parallelization is marginal. The rea-

son for this small difference is that all of 

the source files are approximately the 

same size, so all the processors are equally 

stressed.

The second scenario uses another CPU-in-

tensive method to convert WAV files to 

MP3, but with more difficult conditions this 

time. The script reads and writes the files 

from and to an NFS server with a 100MB 

network connection. Some interesting ob-

servations I made regarding this scenario 

are that, first, the method scales nicely 

(with run times of 207, 107, and 55 seconds 

– that is, 94 percent efficiency for four pro-

cessors). 

Also, the second run, in which the source 

files were in the NFS server’s cache, dif-

fered only slightly compared with the local 

test. Finally, the use of five worker pro-

cesses rather than four achieves slightly 

better results.

The effect of additional worker processes 

is more pronounced in the case of “nar-

rower” data lines. However, sorting the 

WAV files in descending order of size had a 

more pronounced effect on throughput. At 

the end of processing, only one processor 

was still working on the last file, and this 

had a disproportionate effect on the run 

time. More optimization is possible, but 

enough is enough. In the case of complex 

simulations with run times of several hours 

or days, you would definitely want to ex-

periment with additional optimization.

The energy balance of a computer working 

at full load is slightly better than that of a 

machine involved in sequential processing 

with just one core. However, you can save 

more power by switching off your screen 

while your computer is busy with complex 

processing work.

Benefits

001  source workDispatcher

002  doDynamic() { _cmd="doSomething" local item for item in "$@" 

do echo "$item" done | dispatchWork }

Listing 5: Dispatcher at Work

Dispatcher

Worker

Task Pipe

Return Channel

PID

1234

PID

5678

PID

5432

5432

Task Pipe

processed
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