
Sony Computer Entertainment,
Toshiba, and IBM started devel-
oping the innovative Cell Broad-

band Engine Architecture (CBEA)
around 2001. The Cell architecture spe-
cializes in efficient processing of large
data streams, such as the streams that
occur in multimedia applications or
computer games. The first implementa-
tion of the Cell architecture is the Cell
Broadband Engine, also known as the
Cell processor, which dates back to 2005
(Figure 1). Since it was introduced as the
processor for the Sony PlayStation 3, the
Cell CPU has attracted much attention.
Although the Playstation (Figure 2) is
certainly the most widespread applica-
tion of the Cell architecture, the most
spectacular application has to be the
Roadrunner (Figure 3), which uses more
than 12,000 Cell processors [1].

Cell blades are available from both
IBM and Mercury Computer Systems.
Mercury has even built a PCI Express
card with a full-fledged Cell processor
computer. Toshiba uses a variant of the
Cell processor in its Qosmio notebooks.

In addition to its power and flexibility,
the Cell is also known for energy effi-
ciency. Cell-based systems currently hold
the top seven spots in the Green 500 List
[2] of the most energy-efficient super-
computers. In this article, I explore the
Cell architecture and describe an exam-
ple application that will help you get
started with programming for the Cell.

The Cell computer specializes in han-
dling problems that need a large amount
of computer power but are easily split
into separate tasks. The individual Cell
processor cores then process these sepa-
rate tasks in parallel.

The Cell processor consists of a con-
ventional processor core (Power Process-
ing Element, PPE) with 64-bit IBM
Power Architecture and eight Synergistic
Processing Elements (SPE; see Figure 4).
Each of the eight SPEs has 256KB of
local memory and a DMA controller
(Memory Flow Controller, MFC). All
nine processors are linked by a data bus
(Element Interconnect Bus, EIB) to each
other, the main memory, and the periph-
eral devices.

While the operating system on the PPE
manages system resources, the SPEs
handle algebraic operations. Their 128-
bit registers either manipulate four 32-bit
numbers per operation (short integers or
single-precision floating points), or two
64-bit figures (long integers, or double-
precision floating points). This SIMD ar-
chitecture (Single Instruction, Multiple
Data) is similar to the PC processor’s
MMX extension.

One special thing about the SPEs is
that they only work with code and data
stored in their local memory; they do not
access main memory or peripherals. Ap-
plications must ensure that the right
code and data are available locally. The
data transfer operations between main
and local SPE memory are organized by
the SPE’s DMA controllers and do not
cause SPU overhead.

Developing for the Cell
Of course, developing applications for
the Cell processor is more appealing for
those who have access to a Cell-based
machine. If you work on a Cell blade

The Cell architecπture is finding its way into a vast range of computer systems – from huge supercomputers

to inauspicious Playstation game consoles. We’ll show you around the Cell and take a look at a sample Cell

application. BY PETER VÄTERLEIN

Application development for the Cell processor

CELL CULTURE

Programming the CellProgramming

74 ISSUE 99 FEBRuARy 2009

D
m

itry
 S

u
n

a
g
a
tov, Foto

lia

server, you will probably develop your
applications directly on the Cell plat-
form. If you have a Playstation 3, it
makes more sense to use a Linux PC as
your development platform. The Playsta-
tion doesn’t have much in the way of
RAM – just 256MB – and the low mem-
ory becomes fairly obvious when you
work with an X11 interface.

IBM provides a free Software Develop-
ment Kit (SDK) for the Cell architecture
[3]. The Cell SDK will run on the x86,
x86_64, and PowerPC platforms, as well
as on Cell-based Linux machines. The
latest version of the Cell SDK (3.1) sup-
ports Fedora 9 and Red Hat Enterprise
Linux 5.2. The kit includes the Developer
and Extras CD images and an RPM pack-
age with the installation script. Up to
version 3.0, the Cell SDK for Fedora in-
cluded a system simulator, which would
let programmers test and optimize appli-
cations without physical Cell hardware.
As of Version 3.1, the simulator is avail-
able separately from the IBM website
[4]. The new Version 3.1 is still in beta,
but it works perfectly on Fedora 9.

According to IBM, the minimum hard-
ware requirement is an Intel Pentium 4
with 2GHz clock speed or an AMD
Socket F Opteron. On top of this, the
SDK needs 1GB RAM and 5GB free disk
space. To install the Cell SDK on Linux,
you also need the rsync, sed, TCL, and
wget packages. Because the installation
script downloads various packages from
the Barcelona Supercomputer Center [5],
you will need continuous Internet access
throughout the installation.

The cell‑install‑3.1.0‑0.0.‑noarch.‑rpm
RPM creates an /opt/cell directory for the
developer environment and documenta-
tion. The installation script expects the
path to the CD images as an option:

/opt/cell/cellsdk U

‑‑iso path install

This variant has the advantage that you
can install the content of both images in
a single process. If you have the Cell
SDK CD images on separate CDs, you
need to insert the Developer and Extras
CD one after another and launch the in-
stallation separately by typing /opt‑/cell/
cellsdk install. If you have installed the
system simulator, you can initialize it
using the /opt/cell/cellsdk_sync_simula‑
tor script, which installs some required
SDK elements. The ISOs contain several
libraries that are not open source. For
installation documentation, check out
/opt/cell/sdk/docs/install.

π on the Cell
Applications for the Cell processor con-
sist of at least two parts: a program that

runs on the Power PC core (PPE pro-
gram), and at least one program that
keeps the SPEs busy (SPE program). To
allow the PPE program to control the
SPE software, the PPE source code must
include the libspe2.h header file from the
Libspe2 library. The SPE program con-
tains the actual calculating routines. An
SPE program must include the spu_
intrinsics.h and spu_mfcio.h header files
for SIMD calculation functions and for
communication with the PPE and the
other SPEs.

The example program described in
this article provides an approximation of
π using the Shotgun algorithm (see the
box titled “The Mathematical Shotgun”).
The program expects command-line pa-

Several methods exist for calculating an
approximate value for π. The Shotgun
algorithm involves the computer calcu-
lating pairs of random numbers be-
tween 0 and 1 (Figure 5). Each pair rep-
resents a point in a square with an edge
length of 1, where the bottom left corner
has the coordinates (0,0) and the top
right corner the coordinates (1,1).
Assuming that the dots are spread
evenly across the square, the ratio
between the number of dots that lie
inside a circle of radius 1 and the total
number of dots is approximately equal
to the ratio between the areas of a quar-
ter circle with a radius of 1 and a square
with an edge length of 1, which is ex-
actly π/​4.

The Mathematical Shotgun

In contrast to other console manufactur-
ers, Sony officially supports the installa-
tion of Linux on the Playstation, and you
will find many howtos on the web [6].
There are two things to note about run-
ning Linux on the PS 3. First, direct ac-
cess to the hardware is not supported;
to protect its proprietary firmware, Sony
added a virtualization layer. Second,
only six of the Cell processor’s eight
SPEs are available to Linux programs.

Linux on the Playstation

Figure 3: The Roadrunner supercomputer by

IBM, which currently holds the number one

spot in the Top 500 list, uses around 12000

units of the Cell chip.

IB
M

Figure 2: The most popular application for

the Cell processor is Sony's Playstation 3.

S
o
n
y

 C
o
m

p
u

ter E
n
terta

in
m

en
t

Figure 1: The Cell CPU is manufactured using

a Silicon On Insulator (SOI) approach.

IB
M

ProgrammingProgramming the Cell

75ISSUE 99FEBRuary 2009

rameters for the number of random pairs
of figures to generate and the number of
SPEs. After the main() routine in pi_lib‑
spe_ppe.c has parsed the command line
for this information, the program dy-
namically allocates three memory areas.
The first array stores a structure with the
parameters that the PPE and SPE ex-
change for each SPE. The spe_par_t SPE
structure type is declared in the pi_
libspe.h header (Listing 1). The second
array stores a structure with the SPE
context for each SPE. This data contains
everything the PPE needs to know about
a program running on an SPE. The data
type for this is declared in libspe2.h.

Addressing
The start addresses for variables that the
PPE and SPE need to exchange later
must be integer multiples of 16, or even

integer multiples of 128 for best possible
data transfer. Programmers can achieve
this by using the posix_memalign()
function instead of the conventional
malloc(). The size of the individual
blocks exchanged by the PPE and SPE
also must be a multiple of 16. If inexpli-
cable bus errors occur when you test the
application, this is often a result of in-
correct start address alignment or illegal
block sizes in the data blocks trans-
ferred. The third array is only used inter-
nally by the PPE program and does not
have to fulfill any special requirements
with regard to start addresses or sizes.

Random
The PPE program contains a loop (List-
ing 2), which distributes the workload
over the SPEs involved and sets a seed
for creating pseudo random numbers
from the current system time. To launch

a program on an SPE,
three steps are required.
First, the spe_context_
create() function (line 7)
needs to create an SPE
context. Second, the spe_
program_load() function
(line 8) needs to specify
the program to execute;
the programmer needs to
declare the spe_program_
handle_t variable in the
PPE program header for
this. This variable is al-
ways declared externally,
that is, outside of the
function. The name is
identical to the name that
the SPE program will be
given later when you
compile it.

The third step is for the
spe_context_run() func-

tion to launch the program you want to
execute. Normally, this function would
block the PPE program while the SPE
program is running, thus preventing any
other SPE programs from launching par-
allel to it. A Posix thread helps to avoid
this by executing the spu_pthread()
function (line 10), which in turn
launches an SPE program without inter-
rupting the PPE program flow.

Now the SPE program needs to know
where the parameters for the forthcom-
ing calculations are located. Each SPE
has a mailbox for incoming messages
(four 32-bit words) and a mailbox for
outgoing messages (one 32-bit word).
Another mailbox triggers a software in-
terrupt when data is available. In this
case, the PPE program calls spe_in_
mbox_write() (line 13) to pass in the
start address of the array in which the
parameters for the calculations are

01 �for (i = 0; i < numspe; i++) {

02 � spe_par[i].rounds = rounds /

numspe;

03 � gettimeofday(&tv, NULL);

04 � spe_par[i].seed = tv.tv_sec *

1000000 + tv.tv_usec;

05 � spe_par[i].value = 0.0;

06

�07 � spe_ctx[i] = spe_context_

create(0,NULL);

08 � spe_program_load(spe_ctx[i], &pi_

libspe_spe);

09

�10 � pthread_create(&spe_thread_

handle[i], NULL, &spu_pthread, &spe_

ctx[i]);

11

�12 � myaddr = (uint64_t) &spe_par[i];

13 � spe_in_mbox_write(spe_ctx[i], (

unsigned int *) &myaddr, 2, SPE_

MBOX_ANY_NONBLOCKING);

14 �}

Listing 2: For Loop for Controlling the SPEs
01 �#ifndef PI_LIBSPE_H_

02 �#define PI_LIBSPE_H_

03

�04 �typedef struct {

05 � float value;

06 � uint64_t rounds;

07 � uint64_t seed;

08 � char reserved[4];

09 �} spe_par_t;

10

�11 �#endif /*PI_LIBSPE_H_*/

Listing 1: Header File
pi_libspe.h

Figure 4: Each Synergistic Processing Element (SPE) has a Synergistic Processing Unit (SPU), local memory

(LM), and a Memory Flow Controller (MFC). A Memory Interface Controller (MIC) sits in front of the main

memory, and a Bus Interface Controller (BIC) is in front of the input/​output interface.

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

SPE SPE SPE SPE SPE SPE SPE SPE

LS

MFC

Element Interconnect Bus (EIB)

Level-2-Cache

Level-1-Cache PPE

MIC BIC

I/O

SPE: Synergistic Processing Element
SPU: Synergistic Processing Unit
LS: Local Store
MFC: Memory Flow Controller

PPE: Power Processing Element
MIC: Memory Interface Controller
BIC: Bus Interface Controller
MFC: Memory Flow Controller

Memory

Programming the CellProgramming

76 ISSUE 99  FEBRuary 2009

stored. The SPE context defines which
SPE receives the message; its start ad-
dress is the first function argument.

When all SPE programs have termi-
nated, the PPE program releases the
memory for the SPE context in question.
Finally, the PPE program outputs the
SPE’s results on the console.

SPE Culture
The SPE’s work starts with the compute_
pi() function (Listing 3). compute_pi()
expects a seed as an argument, which it
will use to generate random numbers,
and the number of pairs of numbers to
calculate. The function returns an ap-
proximate value for π as a function
value. To allow this to happen, the
main() function (Listing 4) reads the
main memory address at which the
structure with the parameters for the
current SPE program is located. This ad-
dress is also referred to as an effective
address.

Because the spu_read_in_mbox()
function can only read single 32-bit
words, it must be called twice to retrieve
the full 64-bit address (lines 7 and 8).
The variables declared inside the SPE
program all lie within the SPE’s local
memory space. Pointers also reference
memory addresses in the local memory.
Because the Cell processor uses Big En-
dian architecture, the first word contains
the higher value, and the second word
contains the lower value bits.

Next, the SPE program must reserve a
tag ID to distinguish DMA data transfers

between main and local memory
(line 10). An SPE can manage up
to 32 tag IDs. Following this, the
spu_mfcdma64() function trans-
fers the parameter block that
points to the main memory ad-
dress previously retrieved from
the mailbox to the spe_par vari-
able in local memory (line 12).
This function can handle both
read and write DMA transfer. The
sixth argument defines the trans-
fer direction, as a comparison
with line 18 shows.

The spu_mfcdma64() func-
tion does not wait for the mem-
ory transfer to complete. To en-
sure data integrity, the SPE pro-
gram must wait until the DMA
controller (Memory Flow Con-
troller, MFC) has finished; the

mfc_read_tag_status_all() (line 14)
makes sure of this. The mfc_write_tag_
mask() function (lines 19 and 20) tells
us which of the 32 possible parallel DMA
transfers it is waiting for.

Now the calculations can start, and
the results, which are again stored in the
spe_par structure, make their way back
into main memory. Finally, line 22 re-
leases the tag ID.

Instilling Life
Creating the object files is the next step.
Because the PPE SPE processor cores use
different instruction sets, two different
compilers must be used to build the
source:

/opt/cell/toolchain/bin/U

spu‑gcc ‑o U

pi_libspe_spe.spuo U

pi_libspe_spe.c

/opt/cell/toolchain/bin/U

ppu‑gcc ‑c pi_libspe_ppe.c

The .spuo suffix indicates an object file
based on the SPE instruction set. To cre-
ate a single executable, the ppu‑embed‑
spu tool converts the SPE program’s ob-
ject code into a format that the PPE can
read:

/opt/cell/toolchain/bin/U

ppu‑embedspu pi_libspe_spe U

pi_libspe_spe.spuo U

pi_libspe_spe.o

The first parameter is the name used by
the PPE to address the SPE program; it
is identical to the name of the spe_pro‑
gram_handle_t type variable, which is de-
clared in the pi_libspe_ppe.c source file.

The second parameter is the name of
the file containing the SPE object code,
and the third refers to the file where
ppu‑embedspu will write the PPE-read-
able object code. Finally, the developer
must link the PPE and SPE programs
with the libspe2 library to create an
executable:

/opt/cell/toolchain/bin/U

ppu‑gcc ‑o pi_libspe U

pi_libspe_ppe.o U

pi_libspe_spe.o ‑lspe2

If you have access to a computer with
Cell hardware, you can simply copy the
pi_libspe executable to it and execute the
program. If you are using the simulator,
you will need to take a small detour.

Simulated Entity
Before you can launch the Cell Full Sys-
tem Simulator, you must store the path
to the simulator in the SYSTEMSIM_TOP
environmental variable, which is /opt/
ibm/systemsim‑cell by default.

The following command wakes up the
simulator:

01 �float compute_pi(long int seed,

uint64_t rounds)

02 �{

03 � uint64_t i;

04 � uint64_t in = 0;

05 � float x, y;

06 � unsigned long int h;

07

�08 � srand48(seed);

09

�10 � for (i = 0; i < rounds; i++) {

11 � x = (float) lrand48()/RAND_MAX;

12 � y = (float) lrand48()/RAND_MAX;

13

�14 � if ((x * x + y * y) < 1.0) {

15 � in++;

16 � }

17 � }

18

�19 � return (float) 4.0 * in / rounds;

20 �}

Listing 3: compute_pi Function

Figure 5: Approximating π with the Shotgun algo-

rithm: each red dot represents a pair of random fig-

ures. If you count the dots in the blue circle and divide

this number by the total number of dots, the result is

an approximate value for π/​4.

(0,0) (1 ,0)

(1 ,1)(0,1)

ProgrammingProgramming the Cell

77ISSUE 99FEBRuary 2009

/opt/ibm/systemsim‑cell/U

bin/systemsim ‑g

The ‑g option launches a Tcl/​Tk-based
graphical interface (Figure 6). To see the
various modes the simulator offers,
press the Mode button. For a simple
function test, Fast Mode is probably your
best choice. Clicking Go launches the
simulator. Now the console window will
show you the operating system booting
on the simulated Cell machine.

To load the program you want to run
on the simulator, use the callthru com-
mand. If you run the command without
any parameters, it will just show a help

text. To import an executable file stored
in the path /tmp/pi_libspe on the physi-
cal machine, use the command:

callthru source U

/tmp/pi_libspe > pi_libspe

After modifying the permissions, as in
chmod u+x pi_libspe, you can then fi-
nally launch the program:

./pi_libspe 1000000 8

Running the program tells the simulation
machine to create a million pairs of ran-
dom numbers using eight SPEs. The pre-

cision with which the result matches the
accepted value of π depends on the
quality of the pseudo-random numbers,
but also on the number of attempts. The
statistical error is approximately identi-
cal to the reciprocal value of the square
root of the number of attempts. Given
one-million attempts, the deviation be-
tween the approximated value and the
actual value of π is about one thou-
sandth, that is, about 0.003.

Another programming tool is the Data
Communication and Synchronization
(DaCS) library. Dacs abstracts a number
of the Cell processor’s special features,
which means that it potentially could be
ported to other accelerator architectures.
In contrast to this, the Accelerator Li-
brary Framework (ALF) implements a
programming model that swaps out indi-
vidual functions to the SPEs. DaCS and
ALF are included in the IBM developer
environment.

The Multicore Application Runtime
System (Mars) is an open source project
spearheaded by Sony [7]. Mars installs
miniature kernels on the SPEs, and the
kernels autonomously manage the exe-
cution of programs on “their” SPEs. Re-
leased in November 2008, version 1.0.1
is available as either an RPM package or
Tar archive. n

01 �int main ()

02 �{

03 � uint32_t ea_block_h, ea_block_l;

04 � uint32_t tag_id;

05 � spe_par_t spe_par __attribute__

((aligned(16)));

06

�07 � ea_block_h = spu_read_in_mbox();

08 � ea_block_l = spu_read_in_mbox();

09

�10 � tag_id = mfc_tag_reserve();

11

�12 � spu_mfcdma64(&spe_par, ea_block_h,

ea_block_l, sizeof(spe_par_t),

tag_id, MFC_GET_CMD);

13 � mfc_write_tag_mask(1 << tag_id);

14 � mfc_read_tag_status_all();

15

�16 � spe_par.value = compute_pi(spe_

par.seed, spe_par.rounds);

17

�18 � spu_mfcdma64(&spe_par, ea_block_h,

ea_block_l, sizeof(spe_par_t),

tag_id, MFC_PUT_CMD);

19 � mfc_write_tag_mask(1 << tag_id);

20 � mfc_read_tag_status_all();

21

�22 � mfc_tag_release(tag_id);

23

�24 � return 0;

25 �}

Listing 4: Main Function in the SPE Program

Figure 6: The Cell Full System Simulator by IBM makes physical Cell hardware unnecessary.

Programming the CellProgramming

78 ISSUE 99  FEBRuary 2009

[1]	� Top 500: http://​www.​top500.​org

[2]	� Green 500: http://​www.​green500.​org

[3]	� Cell SDK: http://​www.​ibm.​com/​
developerworks/​power/​cell

[4]	� Cell system simulator:
http://​www.​alphaworks.​ibm.​com/​
tech/​cellsystemsim

[5]	� Barcelona Supercomputer Center:
http://​www.​bsc.​es

[6]	� Linux on the PS 3:
http://​en.​wikipedia.​org/​wiki/​Linux_
for_PlayStation_3

[7]	� Mars software and documentation:
ftp://​ftp.​infradead.​org/​pub/​
Sony‑PS3/​mars

INFO

Professor Peter Väterlein teaches at
the University of Esslingen’s Faculty
of Information Technology. His spe-
cialties are operating systems – pref-
erably Linux – and parallel computat-
ing from multicore processors to grid
computing. His homepage is http://​
www.​hs‑esslingen.​de/​mitarbeiter/​
Peter.​Vaeterlein.

T
H

E
 A

U
T

H
O

R

