
Sony Computer Entertainment, 
Toshiba, and IBM started devel-
oping the innovative Cell Broad-

band Engine Architecture (CBEA) 
around 2001. The Cell architecture spe-
cializes in efficient processing of large 
data streams, such as the streams that 
occur in multimedia applications or 
computer games. The first implementa-
tion of the Cell architecture is the Cell 
Broadband Engine, also known as the 
Cell processor, which dates back to 2005 
(Figure 1). Since it was introduced as the 
processor for the Sony PlayStation 3, the 
Cell CPU has attracted much attention. 
Although the Playstation (Figure 2) is 
certainly the most widespread applica-
tion of the Cell architecture, the most 
spectacular application has to be the 
Roadrunner (Figure 3), which uses more 
than 12,000 Cell processors [1].

Cell blades are available from both 
IBM and Mercury Computer Systems. 
Mercury has even built a PCI Express 
card with a full-fledged Cell processor 
computer. Toshiba uses a variant of the 
Cell processor in its Qosmio notebooks.

In addition to its power and flexibility, 
the Cell is also known for energy effi-
ciency. Cell-based systems currently hold 
the top seven spots in the Green 500 List 
[2] of the most energy-efficient super-
computers. In this article, I explore the 
Cell architecture and describe an exam-
ple application that will help you get 
started with programming for the Cell.

The Cell computer specializes in han-
dling problems that need a large amount 
of computer power but are easily split 
into separate tasks. The individual Cell 
processor cores then process these sepa-
rate tasks in parallel.

The Cell processor consists of a con-
ventional processor core (Power Process-
ing Element, PPE) with 64-bit IBM 
Power Architecture and eight Synergistic 
Processing Elements (SPE; see Figure 4). 
Each of the eight SPEs has 256KB of 
local memory and a DMA controller 
(Memory Flow Controller, MFC). All 
nine processors are linked by a data bus 
(Element Interconnect Bus, EIB) to each 
other, the main memory, and the periph-
eral devices.

While the operating system on the PPE 
manages system resources, the SPEs 
handle algebraic operations. Their 128-
bit registers either manipulate four 32-bit 
numbers per operation (short integers or 
single-precision floating points), or two 
64-bit figures (long integers, or double-
precision floating points). This SIMD ar-
chitecture (Single Instruction, Multiple 
Data) is similar to the PC processor’s 
MMX extension.

One special thing about the SPEs is 
that they only work with code and data 
stored in their local memory; they do not 
access main memory or peripherals. Ap-
plications must ensure that the right 
code and data are available locally. The 
data transfer operations between main 
and local SPE memory are organized by 
the SPE’s DMA controllers and do not 
cause SPU overhead.

Developing for the Cell
Of course, developing applications for 
the Cell processor is more appealing for 
those who have access to a Cell-based 
machine. If you work on a Cell blade 
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server, you will probably develop your 
applications directly on the Cell plat-
form. If you have a Playstation 3, it 
makes more sense to use a Linux PC as 
your development platform. The Playsta-
tion doesn’t have much in the way of 
RAM – just 256MB – and the low mem-
ory becomes fairly obvious when you 
work with an X11 interface.

IBM provides a free Software Develop-
ment Kit (SDK) for the Cell architecture 
[3]. The Cell SDK will run on the x86, 
x86_64, and PowerPC platforms, as well 
as on Cell-based Linux machines. The 
latest version of the Cell SDK (3.1) sup-
ports Fedora 9 and Red Hat Enterprise 
Linux 5.2. The kit includes the Developer 
and Extras CD images and an RPM pack-
age with the installation script. Up to 
version 3.0, the Cell SDK for Fedora in-
cluded a system simulator, which would 
let programmers test and optimize appli-
cations without physical Cell hardware. 
As of Version 3.1, the simulator is avail-
able separately from the IBM website 
[4]. The new Version 3.1 is still in beta, 
but it works perfectly on Fedora 9.

According to IBM, the minimum hard-
ware requirement is an Intel Pentium 4 
with 2GHz clock speed or an AMD 
Socket F Opteron. On top of this, the 
SDK needs 1GB RAM and 5GB free disk 
space. To install the Cell SDK on Linux, 
you also need the rsync, sed, TCL, and 
wget packages. Because the installation 
script downloads various packages from 
the Barcelona Supercomputer Center [5], 
you will need continuous Internet access 
throughout the installation.

The cell‑install‑3.1.0‑0.0.‑noarch.‑rpm 
RPM creates an /opt/cell directory for the 
developer environment and documenta-
tion. The installation script expects the 
path to the CD images as an option:

/opt/cell/cellsdk U

‑‑iso path install

This variant has the advantage that you 
can install the content of both images in 
a single process. If you have the Cell 
SDK CD images on separate CDs, you 
need to insert the Developer and Extras 
CD one after another and launch the in-
stallation separately by typing /opt‑/cell/
cellsdk install. If you have installed the 
system simulator, you can initialize it 
using the /opt/cell/cellsdk_sync_simula‑
tor script, which installs some required 
SDK elements. The ISOs contain several 
libraries that are not open source. For 
installation documentation, check out  
/opt/cell/sdk/docs/install.

π on the Cell
Applications for the Cell processor con-
sist of at least two parts: a program that 

runs on the Power PC core (PPE pro-
gram), and at least one program that 
keeps the SPEs busy (SPE program). To 
allow the PPE program to control the 
SPE software, the PPE source code must 
include the libspe2.h header file from the 
Libspe2 library. The SPE program con-
tains the actual calculating routines. An 
SPE program must include the spu_
intrinsics.h and spu_mfcio.h header files 
for SIMD calculation functions and for 
communication with the PPE and the 
other SPEs.

The example program described in 
this article provides an approximation of 
π using the Shotgun algorithm (see the 
box titled “The Mathematical Shotgun”). 
The program expects command-line pa-

Several methods exist for calculating an 
approximate value for π. The Shotgun 
algorithm involves the computer calcu-
lating pairs of random numbers be-
tween 0 and 1 (Figure 5). Each pair rep-
resents a point in a square with an edge 
length of 1, where the bottom left corner 
has the coordinates (0,0) and the top 
right corner the coordinates (1,1).
Assuming that the dots are spread 
evenly across the square, the ratio  
between the number of dots that lie  
inside a circle of radius 1 and the total 
number of dots is approximately equal 
to the ratio between the areas of a quar-
ter circle with a radius of 1 and a square 
with an edge length of 1, which is ex-
actly π/​4.

The Mathematical Shotgun

In contrast to other console manufactur-
ers, Sony officially supports the installa-
tion of Linux on the Playstation, and you 
will find many howtos on the web [6]. 
There are two things to note about run-
ning Linux on the PS 3. First, direct ac-
cess to the hardware is not supported; 
to protect its proprietary firmware, Sony 
added a virtualization layer. Second, 
only six of the Cell processor’s eight 
SPEs are available to Linux programs.

Linux on the Playstation

Figure 3: The Roadrunner supercomputer by 

IBM, which currently holds the number one 

spot in the Top 500 list, uses around 12000 

units of the Cell chip.

IB
M
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rameters for the number of random pairs 
of figures to generate and the number of 
SPEs. After the main() routine in pi_lib‑
spe_ppe.c has parsed the command line 
for this information, the program dy-
namically allocates three memory areas. 
The first array stores a structure with the 
parameters that the PPE and SPE ex-
change for each SPE. The spe_par_t SPE 
structure type is declared in the pi_
libspe.h header (Listing 1). The second 
array stores a structure with the SPE 
context for each SPE. This data contains 
everything the PPE needs to know about 
a program running on an SPE. The data 
type for this is declared in libspe2.h.

Addressing
The start addresses for variables that the 
PPE and SPE need to exchange later 
must be integer multiples of 16, or even 

integer multiples of 128 for best possible 
data transfer. Programmers can achieve 
this by using the posix_memalign() 
function instead of the conventional 
malloc(). The size of the individual 
blocks exchanged by the PPE and SPE 
also must be a multiple of 16. If inexpli-
cable bus errors occur when you test the 
application, this is often a result of in-
correct start address alignment or illegal 
block sizes in the data blocks trans-
ferred. The third array is only used inter-
nally by the PPE program and does not 
have to fulfill any special requirements 
with regard to start addresses or sizes.

Random
The PPE program contains a loop (List-
ing 2), which distributes the workload 
over the SPEs involved and sets a seed 
for creating pseudo random numbers 
from the current system time. To launch 

a program on an SPE, 
three steps are required. 
First, the spe_context_ 
create() function (line 7) 
needs to create an SPE 
context. Second, the spe_
program_load() function 
(line 8) needs to specify 
the program to execute; 
the programmer needs to 
declare the spe_program_
handle_t variable in the 
PPE program header for 
this. This variable is al-
ways declared externally, 
that is, outside of the 
function. The name is 
identical to the name that 
the SPE program will be 
given later when you 
compile it.

The third step is for the 
spe_context_run() func-

tion to launch the program you want to 
execute. Normally, this function would 
block the PPE program while the SPE 
program is running, thus preventing any 
other SPE programs from launching par-
allel to it. A Posix thread helps to avoid 
this by executing the spu_pthread() 
function (line 10), which in turn 
launches an SPE program without inter-
rupting the PPE program flow.

Now the SPE program needs to know 
where the parameters for the forthcom-
ing calculations are located. Each SPE 
has a mailbox for incoming messages 
(four 32-bit words) and a mailbox for 
outgoing messages (one 32-bit word). 
Another mailbox triggers a software in-
terrupt when data is available. In this 
case, the PPE program calls spe_in_
mbox_write() (line 13) to pass in the 
start address of the array in which the 
parameters for the calculations are 

01 �for ( i = 0; i < numspe; i++ ) {

02 �  spe_par[i].rounds = rounds / 

numspe;

03 �  gettimeofday( &tv, NULL );

04 �  spe_par[i].seed = tv.tv_sec * 

1000000 + tv.tv_usec;

05 �  spe_par[i].value = 0.0;

06

�07 �  spe_ctx[i] = spe_context_

create(0,NULL);

08 �  spe_program_load( spe_ctx[i], &pi_

libspe_spe );

09

�10 �  pthread_create( &spe_thread_

handle[i], NULL, &spu_pthread, &spe_

ctx[i] );

11

�12 �  myaddr = (uint64_t) &spe_par[i];

13 �  spe_in_mbox_write( spe_ctx[i], ( 

unsigned int * ) &myaddr, 2, SPE_

MBOX_ANY_NONBLOCKING );

14 �}

Listing 2: For Loop for Controlling the SPEs
01 �#ifndef PI_LIBSPE_H_

02 �#define PI_LIBSPE_H_

03

�04 �typedef struct {

05 �        float value;

06 �        uint64_t rounds;

07 �        uint64_t seed;

08 �        char reserved[4];

09 �} spe_par_t;

10

�11 �#endif /*PI_LIBSPE_H_*/

Listing 1: Header File  
pi_libspe.h

Figure 4: Each Synergistic Processing Element (SPE) has a Synergistic Processing Unit (SPU), local memory 

(LM), and a Memory Flow Controller (MFC). A Memory Interface Controller (MIC) sits in front of the main 

memory, and a Bus Interface Controller (BIC) is in front of the input/​output interface.
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stored. The SPE context defines which 
SPE receives the message; its start ad-
dress is the first function argument.

When all SPE programs have termi-
nated, the PPE program releases the 
memory for the SPE context in question. 
Finally, the PPE program outputs the 
SPE’s results on the console.

SPE Culture
The SPE’s work starts with the compute_
pi() function (Listing 3). compute_pi() 
expects a seed as an argument, which it 
will use to generate random numbers, 
and the number of pairs of numbers to 
calculate. The function returns an ap-
proximate value for π as a function 
value. To allow this to happen, the 
main() function (Listing 4) reads the 
main memory address at which the 
structure with the parameters for the 
current SPE program is located. This ad-
dress is also referred to as an effective 
address.

Because the spu_read_in_mbox() 
function can only read single 32-bit 
words, it must be called twice to retrieve 
the full 64-bit address (lines 7 and 8). 
The variables declared inside the SPE 
program all lie within the SPE’s local 
memory space. Pointers also reference 
memory addresses in the local memory. 
Because the Cell processor uses Big En-
dian architecture, the first word contains 
the higher value, and the second word 
contains the lower value bits.

Next, the SPE program must reserve a 
tag ID to distinguish DMA data transfers 

between main and local memory 
(line 10). An SPE can manage up 
to 32 tag IDs. Following this, the 
spu_mfcdma64() function trans-
fers the parameter block that 
points to the main memory ad-
dress previously retrieved from 
the mailbox to the spe_par vari-
able in local memory (line 12). 
This function can handle both 
read and write DMA transfer. The 
sixth argument defines the trans-
fer direction, as a comparison 
with line 18 shows.

The spu_mfcdma64() func-
tion does not wait for the mem-
ory transfer to complete. To en-
sure data integrity, the SPE pro-
gram must wait until the DMA 
controller (Memory Flow Con-
troller, MFC) has finished; the 

mfc_read_tag_status_all() (line 14) 
makes sure of this. The mfc_write_tag_
mask() function (lines 19 and 20) tells 
us which of the 32 possible parallel DMA 
transfers it is waiting for. 

Now the calculations can start, and 
the results, which are again stored in the 
spe_par structure, make their way back 
into main memory. Finally, line 22 re-
leases the tag ID.

Instilling Life
Creating the object files is the next step. 
Because the PPE SPE processor cores use 
different instruction sets, two different 
compilers must be used to build the 
source:

/opt/cell/toolchain/bin/U

spu‑gcc ‑o U 

pi_libspe_spe.spuo U

pi_libspe_spe.c

/opt/cell/toolchain/bin/U

ppu‑gcc ‑c pi_libspe_ppe.c

The .spuo suffix indicates an object file 
based on the SPE instruction set. To cre-
ate a single executable, the ppu‑embed‑
spu tool converts the SPE program’s ob-
ject code into a format that the PPE can 
read:

/opt/cell/toolchain/bin/U

ppu‑embedspu pi_libspe_spe U

pi_libspe_spe.spuo U

pi_libspe_spe.o

The first parameter is the name used by 
the PPE to address the SPE program; it 
is identical to the name of the spe_pro‑
gram_handle_t type variable, which is de-
clared in the pi_libspe_ppe.c source file. 

The second parameter is the name of 
the file containing the SPE object code, 
and the third refers to the file where 
ppu‑embedspu will write the PPE-read-
able object code. Finally, the developer 
must link the PPE and SPE programs 
with the libspe2 library to create an  
executable:

/opt/cell/toolchain/bin/U

ppu‑gcc ‑o pi_libspe U

pi_libspe_ppe.o U

pi_libspe_spe.o ‑lspe2

If you have access to a computer with 
Cell hardware, you can simply copy the 
pi_libspe executable to it and execute the 
program. If you are using the simulator, 
you will need to take a small detour.

Simulated Entity
Before you can launch the Cell Full Sys-
tem Simulator, you must store the path 
to the simulator in the SYSTEMSIM_TOP 
environmental variable, which is /opt/
ibm/systemsim‑cell by default. 

The following command wakes up the 
simulator:

01 �float compute_pi( long int seed, 

uint64_t rounds )

02 �{

03 �  uint64_t i;

04 �  uint64_t in = 0;

05 �  float x, y;

06 �  unsigned long int h;

07

�08 �  srand48( seed );

09

�10 �  for ( i = 0; i < rounds; i++ ) {

11 �    x = (float) lrand48()/RAND_MAX;

12 �    y = (float) lrand48()/RAND_MAX;

13

�14 �    if (( x * x + y * y ) < 1.0 ) {

15 �      in++;

16 �    }

17 �  }

18

�19 �  return ( float ) 4.0 * in / rounds;

20 �}

Listing 3: compute_pi Function

Figure 5: Approximating π with the Shotgun algo-

rithm: each red dot represents a pair of random fig-

ures. If you count the dots in the blue circle and divide 

this number by the total number of dots, the result is 

an approximate value for π/​4.
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/opt/ibm/systemsim‑cell/U

bin/systemsim ‑g

The ‑g option launches a Tcl/​Tk-based 
graphical interface (Figure 6). To see the 
various modes the simulator offers, 
press the Mode button. For a simple 
function test, Fast Mode is probably your 
best choice. Clicking Go launches the 
simulator. Now the console window will 
show you the operating system booting 
on the simulated Cell machine.

To load the program you want to run 
on the simulator, use the callthru com-
mand. If you run the command without 
any parameters, it will just show a help 

text. To import an executable file stored 
in the path /tmp/pi_libspe on the physi-
cal machine, use the command:

callthru source U

/tmp/pi_libspe > pi_libspe

After modifying the permissions, as in 
chmod u+x pi_libspe, you can then fi-
nally launch the program:

./pi_libspe 1000000 8

Running the program tells the simulation 
machine to create a million pairs of ran-
dom numbers using eight SPEs. The pre-

cision with which the result matches the 
accepted value of π depends on the 
quality of the pseudo-random numbers, 
but also on the number of attempts. The 
statistical error is approximately identi-
cal to the reciprocal value of the square 
root of the number of attempts. Given 
one-million attempts, the deviation be-
tween the approximated value and the 
actual value of π is about one thou-
sandth, that is, about 0.003.

Another programming tool is the Data 
Communication and Synchronization 
(DaCS) library. Dacs abstracts a number 
of the Cell processor’s special features, 
which means that it potentially could be 
ported to other accelerator architectures. 
In contrast to this, the Accelerator Li-
brary Framework (ALF) implements a 
programming model that swaps out indi-
vidual functions to the SPEs. DaCS and 
ALF are included in the IBM developer 
environment.

The Multicore Application Runtime 
System (Mars) is an open source project 
spearheaded by Sony [7]. Mars installs 
miniature kernels on the SPEs, and the 
kernels autonomously manage the exe-
cution of programs on “their” SPEs. Re-
leased in November 2008, version 1.0.1 
is available as either an RPM package or 
Tar archive.  n

01 �int main ()

02 �{

03 �  uint32_t ea_block_h, ea_block_l;

04 �  uint32_t tag_id;

05 �  spe_par_t spe_par __attribute__ 

((aligned(16)));

06

�07 �  ea_block_h = spu_read_in_mbox();

08 �  ea_block_l = spu_read_in_mbox();

09

�10 �  tag_id = mfc_tag_reserve();

11

�12 �  spu_mfcdma64( &spe_par, ea_block_h, 

ea_block_l, sizeof( spe_par_t ), 

tag_id, MFC_GET_CMD );

13 �  mfc_write_tag_mask( 1 << tag_id );

14 �  mfc_read_tag_status_all();

15

�16 �  spe_par.value = compute_pi( spe_

par.seed, spe_par.rounds );

17

�18 �  spu_mfcdma64( &spe_par, ea_block_h, 

ea_block_l, sizeof( spe_par_t ), 

tag_id, MFC_PUT_CMD );

19 �  mfc_write_tag_mask( 1 << tag_id );

20 �  mfc_read_tag_status_all();

21

�22 �  mfc_tag_release( tag_id );

23

�24 �  return 0;

25 �}

Listing 4: Main Function in the SPE Program

Figure 6: The Cell Full System Simulator by IBM makes physical Cell hardware unnecessary.
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[1]	� Top 500: http://​www.​top500.​org

[2]	� Green 500: http://​www.​green500.​org

[3]	� Cell SDK: http://​www.​ibm.​com/​
developerworks/​power/​cell

[4]	� Cell system simulator:  
http://​www.​alphaworks.​ibm.​com/​
tech/​cellsystemsim

[5]	� Barcelona Supercomputer Center: 
http://​www.​bsc.​es

[6]	� Linux on the PS 3:  
http://​en.​wikipedia.​org/​wiki/​Linux_
for_PlayStation_3

[7]	� Mars software and documentation: 
ftp://​ftp.​infradead.​org/​pub/​
Sony‑PS3/​mars
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