
f you want to offer login access to re-

stricted web pages, you don’t need a

MySpace account or a big corporate

website. Apache provides several conve-

nient alternatives for supporting user

 authentication. Although these login op-

tions require a few extra configuration

steps, you can easily protect your pages

without the need for add-on, proprietary

applications. In this article, I will de-

scribe some techniques for password-

protecting your pages.

The Apache web server goes through

three phases to determine whether the

current user is allowed

to view the requested re-

source. The Access phase

checks to see whether

the requesting IP address

is allowed to view the resource. The Au-

thentication phase verifies that the user-

name provided matches the password

associated with the user. The Authori-

zation phase is usually used to support

user groups for easier administration.

With a bit of custom coding, I will ex-

plain how you can extend any of these

phases to do whatever you want.

Unless your connection is over SSL,

all of these methods will send your pass-

word in the clear. Using SSL for all pages

that require authentication is highly

recommended.

Examples in this article were tested

with Apache 2.2.8. If you are using an

earlier version, some of these options

might not be available or the configura-

tion could differ slightly.

File-based authentication, which is

sometimes referred to as Basic Auth or

htpasswd auth, is the most common

technique for supporting user login in

Apache. For example, if you want to pro-

tect all of the administration pages of

our site, you can invoke file-based au-

thentication with the following code in

your Apache configuration file. (The

Apache configuration file is located in

different places on different systems. On

Red Hat/ Fedora systems, it is /etc/httpd/

conf/httpd.conf, and it's /etc/apache2/

apache2.conf on Ubuntu.)

<Location /admin>

AuthType Basic

AuthName "Admin Pages"

AuthUserFile /path/to/our/password-file

AuthBasicProvider file

Require valid-user

</Location>

If you’re using Apache 2.0.x, you will

need to remove the AuthBasicProvider

directive.

After you set the AuthType to

Basic, name this area (e.g., Admin

Pages) so users know what they

are logging into. Also, you must tell

Apache where to find the password

file for this area.

The final step is the Require directive,

which tells Apache to allow any valid

user in the file.

Apache comes with a program called

htpasswd that helps you create and up-

date the password file. Initially, you cre-

ate the file with:

htpasswd -c 5

/path/to/our/password-file 5

<username>

Apache offers several options for adding a password-protected area to a website. BY FRANK WILES

Web Authentication

38 ISSUE 96 NOVEMBER 2008

038-041_webauth.indd 38 11.09.2008 16:11:50 Uhr

After the file is created and you just

want to add more users or change their

passwords, use the same htpasswd com-

mand, but without the -c option. If you

need to remove a user, you can either

edit the file by hand in a text editor or

use htpasswd with the -D option to de-

lete the user.

Also, you could use this method (and

the other methods I’ll discuss later) with

directives such as <Directory>, <Direc-

toryMatch>, <LocationMatch>, or

<FilesMatch>. For example, you could

require a password to view any .gif files

on your site with:

<FilesMatch "\.gif$">

AuthType Basic

AuthName "Images Require a Password"

AuthUserFile /path/to/our/password-file

AuthBasicProvider file

Require valid-user

</FilesMatch>

In addition to allowing all users in the

password file into an area, you can also

restrict access down to specific users.

The configuration in Listing 1 grants

steve and bob access to the /admin sec-

tion with the Require user entry, fol-

lowed by the space-separated list of

users. However, any authenticated user

who logs in succesffully can access

/content.

Another useful feature is that you can

grant access to specific groups rather

than individual users. To do this, create

a group file. Listing 2 shows the preced-

ing example using groups. The format of

the group file is very simple:

<group name>: <user1>... <userN>

For this example, the contents of the file

would be:

admin: steve bob

In this way, you can create as many

groups as you like – one per line. The

use of groups is a great way to keep your

maintenance time down and make your

configuration easier to read and under-

stand.

Note that it is important to make sure

your password and group files aren’t in-

side your Apache’s DocumentRoot; oth-

erwise, anyone could download them.

Maybe your site already uses software

that requires a password – a forum per-

haps – and after you have several users

in your forum, you decide to add an-

other section to your website that is only

for registered forum users.

Although you could have all of your

users re-register with some form of file-

based authentication (as described pre-

viously), this could turn into a mainte-

nance nightmare, creating two places

to add and modify users. Furthermore,

some users might end up with different

usernames and passwords for different

parts of the site.

If your forum uses an SQL database

and stores the password, you can config-

ure Apache to access the password infor-

mation from the database. The existing

software will have to store its passwords

with the same one-way hash as Apache

– in this case, the crypt() function. Also,

you’ll need to enable two Apache mod-

ules: mod_dbd.so and mod_authn_dbd.

so. To enable these modules, add these

lines to your Apache configuration file:

LoadModule 5

dbd_module modules/mod_dbd.so

LoadModule authn_dbd_module modules/5

mod_authn_dbd.so

Note that the second parameter is either

a relative or a full path to the module it-

self; the exact value might differ on your

system, depending on your distribution

or how you compile Apache.

After those modules are loaded, you

need to configure Apache to reference

your SQL database to retrieve pass-

words. If you’re using a PostgreSQL da-

tabase, your configuration would look

something like Listing 3. First, you must

define the database driver – in this case,

pgsql – for the PostgreSQL database. If

you’re using a MySQL database, set this

driver to mysql. Apache also has built-in

support for Oracle, SQLite2, and SQLite3

databases.

After defining the driver, you must

pass the driver some parameters about

how to connect to the database. In the

case of MySQL or PostgreSQL, you need

Web Authentication

39ISSUE 96NOVEMBER 2008

01 <Location />

02 AuthType Basic

03 AuthName "My Site"

04 AuthBasicProvider file

05 AuthUserFile /path/to/our/

password-file

06 AuthGroupFile /path/to/our/

group-file

07 </Location>

08

09 <Location /admin>

10 Require group admin

11 </Location>

12

13 <Location /content>

14 Require valid-user

15 </Location>

Listing 2: Working with
Groups

01 <Location />

02 AuthType Basic

03 Authname "My Site"

04 AuthBasicProvider file

05 AuthUserFile /path/to/our/

password-file

06 </Location>

07

08 <Location /admin>

09 Require user steve bob

10 </Location>

11

12 <Location /content>

13 Require valid-user

14 </Location>

Listing 1: Restricting User Access

01 DBDriver pgsql

02 DBDParams "host=localhost

dbname=forum user=apache

password=secret"

03

04 <Location /forum-users-only>

05 AuthType Basic

06 AuthName "Forum Users Only"

07 AuthBasicProvider dbd

08 Require valid-user

09

10 AuthDBDUserPWQuery "SELECT

password FROM users WHERE user = %s"

11 </Location>

Listing 3: Authenticating with SQL

038-041_webauth.indd 39 11.09.2008 16:11:52 Uhr

to pass the database host, database

name, user, and password.

The next few lines should be familiar

by now; the only thing different is that

AuthBasicProvider is set to use the dbd

module. Setting up the actual user pass-

word query comes last. Because every

database differs in table and column

names, you must instruct Apache on

how to go about retrieving a password

from the database.

Another of the more popular authenti-

cation modules is mod_authnz_ldap,

which allows you to authenticate your

website against an LDAP server. LDAP

authentication can be very useful in cor-

porate environments in which a central

LDAP server handles all authentication

across the company.

Enable Apache’s LDAP module with:

LoadModule authnz_ldap_module 5

modules/mod_authnz_ldap.so

To configure your Apache server to

 authenticate users with LDAP, you need

to set the LDAP URL:

<Location /content>

AuthLDAPURL 5

"ldap://ldap1.company.com/ou=5

People, o=Company"

Require valid-user

</Location>

Also, you can define redundant LDAP

servers for fault tolerance by just adding

another server to the URL:

<Location /content> AuthLDAPURL 5

 “ldap:// ldap1.company.com 5

 ldap2.company.com/ ou=5

 People, o=Company”

Requirevalid-user

</ Location>

The LDAP modules offer several op-

tions. By ensuring that the user has cer-

tain LDAP attributes, you can include

group information and restrict access for

a variety of situations.

Apache is a very extensible system – so

flexible that you don’t even have to use

it for http. By writing Apache modules,

you can extend Apache. Modules can be

written in C, like the modules discussed

in this article, but the C language is time

consuming and cumbersome for web ad-

mins who aren’t experienced software

developers.

Thanks to modules such as mod_perl

and mod_python, you can build your

own custom Apache modules in more

agile languages.

Apache provides great flexibility when

dealing with access to content, but one

thing it doesn’t take into account is the

time of day. As an example of how to

customize Apache authentication, as-

sume your company has a first and sec-

ond shift and you want to ensure that

first-shift employees can only access

Web Authentication

40 ISSUE 96 NOVEMBER 2008

01 package ByShiftAuth;

02

03 use strict;

04 use warnings;

05

06 use Apache2::Access ();

07 use Apache2::RequestUtil ();

08 use Apache2::Const -compile => qw(OK

HTTP_UNAUTHORIZED AUTH_REQUIRED);

09

10 use DBI;

11 use Digest::MD5 qw(md5_hex);

12

13 sub handler {

14 my $r = shift;

15

16 # See if this is the initial

request or not, if it isn't

17 # they are already authentication

and we just need to reset

18 # the username

19 if(!$r->is_initial_req) {

20

21 if(defined $r->prev) {

22 $r->user($r->prev->user

);

23 }

24

25 return Apache2::Const::OK;

26

27 }

28

29 # Check to see if it's a weekend

30 my $day_of_week =

(localtime(time))[6];

31 if($day_of_week == 0 or $day_of_

week == 6) {

32 return Apache2::Const::HTTP_

UNAUTHORIZED;

33 }

34

35 # Get the username and password

36 my ($rc, $password) = $r->get_

basic_auth_pw();

37 my $user = $r->user;

38

39 unless ($user and $password) {

40 $r->note_basic_auth_failure;

41 return(Apache2::Const::AUTH_

REQUIRED);

42 }

43

44 # Now let's connect to our

database and compare things in

45 # our database we're going to

store passwords as MD5 digests

46 my $dbhv = DBI->connect('dbi:Pg:

dbname=admin', 'apache', 'secret')

47 or die "Cannot connect to

database: $!";

48

49 my $sth = $dbh->prepare(qq{

50 SELECT password FROM users

WHERE user = ? AND

51 current_time BETWEEN

shift_begin AND shift_end });

52

53 $sth->execute($user);

54 my $db_password = $sth->fetchrow;

55 $sth->finish;

56

57 # Make sure we found a password

for this user, if we don't

58 # it means they don't exist or

their shift isn't in progress

59 if(!$db_password) {

60 $r->note_basic_auth_failure;

61 return(Apache2::Const::AUTH_

REQUIRED);

62 }

63

64 # Check to make sure the

passwords match

65 if(md5_hex($password) ne $db_

passwd) {

66 $r->note_basic_auth_failure;

67 return(Apache2::Const::AUTH_

REQUIRED);

68 }

69

70 return(Apache2::Const::OK);

71

72 }

Listing 4: No Weekend Work!

038-041_webauth.indd 40 11.09.2008 16:11:52 Uhr

pages or applications during their work

hours. First, enable mod_perl with:

LoadModule perl_module 5

modules/mod_perl.so

mod_perl lets you override a particular

phase of the Apache life cycle by writing

a Perl module. In this case, the module

compares the username and password

but also makes sure the employee is

 authorized to work at the current time

(Listing 4). Also, reject everyone who

tries to work on Saturdays and Sundays.

This code can be placed anywhere in

Perl’s @INC path in a file named ByShift-

Auth.pm. If you want to put it in another

location, add the following to your

Apache configuration:

<Perl>

use lib qw(/path/to/directory);

</Perl>

After loading in the necessary mod_perl

modules, DBI, and the MD5 libraries,

Listing 4 defines the handler.

First, check to see whether this is the

initial request or some sort of internal

redirect. If it’s not the initial request, the

system has already authenticated this re-

quest and can just pass along the infor-

mation.

Next, check to make sure the current

day isn’t a weekend, and if it is, simply

reject everyone. The script then obtains

the username and password from the

user.

If both a username and password

aren’t available, the script bails out and

tells the browser to re-prompt with the

AUTH_REQUIRED return value.

Next, the script must connect to the

database and look for the user’s pass-

word. The query assumes the start and

end times of the user’s shift are in the

users table.

If the user doesn’t exist or is attempt-

ing to login outside of their shift hours,

this query won’t return any data. In pro-

duction, you would probably want to tell

the user that the reason they can’t log

in is that it isn’t their shift so that they

don’t keep retrying.

Finally, compare the MD5 digest of the

password with the password retrieved

from the database.

If the test fails, the user is prompted

again. If all goes well, return the OK con-

stant, which tells Apache that the user is

authenticated.

Now that you see how the code works,

the next step is to tell Apache to use it,

which you can do by overriding the

 authentication phase with the custom

code:

<Location /admin>

AuthType Basic

AuthName "Admin Pages"

PerlAuthenHandler ByShiftAuth

Require valid-user

</Location>

These short examples show some of the

ways you can protect your web pages

using more advanced Apache configura-

tions. For more options, I encourage you

to check the Apache website (http://

 httpd. apache. org). p

the mathematics of humour
TWELVE Quirky Humans,

TWO Lovecraftian Horrors,

ONE Acerbic A.I.,

ONE Fluffy Ball of Innocence and

TEN Years of Archives

 EQUALS

ONE Daily Cartoon that Covers the

 Geek Gestalt from zero to infinity!

Over Two Million Geeks around the world can’t be wrong!

COME JOIN THE INSANITY!

Web Authentication

41ISSUE 96NOVEMBER 2008

038-041_webauth.indd 41 11.09.2008 16:11:53 Uhr

