
ike many security issues, the

World Wide Web presents two

very different sets of problems

with some very different solutions.

On the one side, most of us use a web

browser on a regular basis and want to

prevent our web clients from running an

attacker’s code, letting them take over

our machine. On the other side are web

servers, which you don’t want to see

compromised, under constant attack

(XSS, SQL injection, etc.). So what’s the

answer? Well, there is no single answer.

You need to take steps to protect both

the clients and the servers because no

matter how security conscious you are,

you will interact with servers or clients

that are less secure.

For the Firefox web browser, out of 196

security advisories, 62 listed disabling

JavaScript as a workaround. Addition-

ally, the JavaScript-based vulnerabilities

tend to be the ones that allow for arbi-

trary code execution, so any preemptive

security measure that deals with them

will have a significant effect.

Securing web clients against attacks

is relatively simple; however, some web-

sites might not work properly. Disabling

JavaScript entirely is one option, but

many sites now rely on JavaScript to

present content, forms, and so on.

A more fine-grained approach is avail-

able with the NoScript plugin for Firefox

[1]. The default is to block JavaScript

 execution, and then you can choose to

allow JavaScript to run temporarily or

permanently. Or, you can permanently

mark a site as untrusted to prevent any

JavaScript from ever being executed

from that site (Figure 1).

The major downside to this plugin is

that you need to pay attention to the in-

formation bar that pops up at the bottom

of the screen when JavaScript is blocked

(Figure 2) and decide whether or not to

allow it. If you don’t, you will find your-

self, as I have, staring at a website won-

dering why it is mostly blank, or why an

online form isn’t working properly.

Additionally, NoScript has some basic

cross-site scripting protection – URLs

with characters such as “>” in them

will generate a warning and give the

user a chance to block their loading.

As a server admin, you can’t force cli-

ents to be secure, but you can protect

your own server and web-based applica-

tions from attack. Protecting your server

can also prevent broken clients or users

who have visited hostile sites from tak-

ing actions that might harm their ac-

counts or the data hosted on your site –

for example, from a cross-site scripting

attack that interacts with the user’s ac-

count to change the password on their

account at your site.

Like many security projects, ModSecu-

rity started out as an open source proj-

ect, licensed under the GPL v2 and

aimed at adding a layer of security to

the Apache web server [2]. The project

appears to have been commercialized

successfully; however, like many open

source security applications, free

 versions are still available.

Learn more about protecting your

website with NoScript, ModSecu-

rity, and Site Security Policy.

BY KURT SEIFRIED

Security Lessons

58 ISSUE 94 SEPTEMBER 2008

The main benefit of ModSecurity is

that you can use it to provide security

for any application running on your sys-

tem. On the downside, you must be able

to insert a custom module into Apache –

meaning you need to have control over

the server – and have enough CPU

power to handle the additional process-

ing required by this module, which can

be significant. The ModSecurity module

allows requests to the server to be exam-

ined at various stages in the process:

when the request header is first pro-

cessed, when the request body is pro-

cessed, when the response headers are

created, when the response body is pro-

cessed, and at the logging phase.

Another advantage of ModSecurity is

that it supports Perl-Compatible Regular

Expressions (PCRE), and the rules it

supports can also trigger a variety of

 actions, including to allow or block a

 request, to drop the connection by send-

ing a FIN packet, or to execute an exter-

nal program. For example, this allows

site admins to filter out characters such

as “<” and “>” from requests – a likely

indicator of a cross-site scripting attack –

or to look for personal information such

as 12-digit credit card number strings

within outgoing requests (e.g., triggered

by an SQL injection attack) and block

that data from being served to the at-

tacker. See the “Example Rule” box.

As you can imagine, all this power and

flexibility comes at the cost of complex-

ity; however, this is alleviated because a

powerful default rule set has been made

available for free (licensed under the

GPL v2), which can be used as a starting

point for most sites.

Site Security Policy is an interesting

 approach that is still in the formative

stages [3]. The idea is that a web server

hosts a file that specifies how a client

should interact with the server, thus

 preventing unsafe interactions such as

cross-site scripting (XSS) attacks or

cross-site request forgery attacks. On

the client side, there is either built-in

support for this standard, or a plugin –

available for Firefox – that allows the cli-

ent to download and parse the policy file

before interacting with the web server.

One interesting side effect to this ap-

proach is the possibility of having web

proxies such as Squid support the stan-

dard, in effect protecting all the web

 clients behind them from potentially

 unsafe actions at sites that choose to

support the Site Security Policy standard.

Web security has no simple solution: No

matter how hard we try, the bad guys

will either run hostile web servers or

compromise other web servers. On the

client side, things are basically a disas-

ter. If you are running Linux, however,

chances are quite low that you will be

targeted, and chances are good that you

keep your software up to date because

almost all distributions update automati-

cally by default, thus putting you ahead

of the game!

By plugging the holes as they are iden-

tified and by applying additional security

measures – such as NoScript and Mod-

Security – you can improve the chances

of “healthy” servers and clients staying

that way.

Ultimately, this reduces the time and

energy you have to spend on repetitive

cleanup, which is something everybody

wants, anyway. p

Kurt Seifried is an

Information Secu-

rity Consultant spe-

cializing in Linux

and networks since

1996. He is married

and has four cats

but no fish (because

the cats are more hungry than afraid

of water). He often wonders how it

is that technology works on a large

scale but often fails on a small scale.

T
H

E
 A

U
T

H
O

R

[1] NoScript plugin for Firefox:

http:// noscript. net/

[2] ModSecurity for Apache:

http:// www. modsecurity. org/

[3] Site Security Policy:

http:// people. mozilla. com/ ~bsterne/

 site-security-policy/

INFO

A simplistic example to detect and

block any 12-digit number in outgo-

ing web pages:

SecRule RESPONSE_BODY

"[0-9]{12}" \

"phase:4,t:none,ctl:auditLogPa

rts

=+E,deny,log,auditlog,

status:500,msg:

'a 12 digit number'

,id:'1',tag:

'LEAKAGE/ERRORS',severity:'1'"

Example Rule

Security Lessons

59ISSUE 94 SEPTEMBER 2008

