
ollowing hot on the heels of GCC

4.2, the GNU Compiler Compila-

tion [1] version 4.3 is now avail-

able [2]. As could be expected, many

functions tagged as obsolete have now

been dropped, such as the -m386,

-m486, -mpentium, and -mpentiumpro

optimization options. If you really do

need these legacy CPUs, you can reani-

mate them with the -march= and

-mtune= options. Users with newer

CPUs will appreciate dedicated optimi-

zation options for the AMD Geode and

Intel Core 2, as well as the SSE3

(-msse3), SSE 4.1 (-msse4.1), and SSE

4.2 (-msse4.2) features.

From an architectural point of view,

GCC 4.3 adds ARM version 7 and the

Thumb-2 extension for size optimiza-

tion. Direct support for the IBM Syner-

gistic Processor Unit (SPU) Cell Broad-

band Engine Architecture, found in both

PlayStation 3 and IBM servers, is an-

other GCC first. The release notes [2] de-

tail various changes for MIPS, Motorola

68000, Coldfire, Cris, and PowerPC.

Some of the new optimizations rely on

the MPFR (multiple-precision floating-

point computations with correct round-

ing [3]) library, which helps GCC evalu-

ate complex expressions and calls to

 embedded mathematical functions and

truncate to equivalent functions or con-

stants at build time. The MPFR library

returns correct results, independent of

floating-point precision and the target

CPU. On the downside, a new depen-

dency on the MPFR library, and thus on

the GMP libraries, makes cross-compil-

ing GCC itself more complex because

these two libraries also need to be cross-

compiled with the C++ code.

GCC 4.3 code for x86 no longer creates

an explicit cld instruction before each

autorepeat string operation (REP

MOV...), thus saving between 4 and 52

cycles on an Intel Pentium. This devel-

opment revealed that some Linux and

BSD kernels do not reset the direction

flag themselves during signal handling.

This in turn can mean that the kernel

performs string operations in signal han-

dlers in the opposite direction, which

leads to incorrect addressing – a fairly

obvious vulnerability [4].

Version 4.3 of GCC is the first to detect

out-of-bounds access to arrays at build

time, with the use of constants or offsets

to do so. The -Warray-bounds option

for this is also enabled by setting -Wall.

The new decimal floating-point arith-

metic [5] adds more precision for finan-

cial and scientific applications. The use

of base 10 instead of 2 also means that

operations perform more accurate

rounding; for example, the result of

0.9:10 is now 0.09 and not 0.089999996.

A GCC extension lets developers spec-

ify binary integer constants with the 0b

prefix or bit maps with 0B. Support for

fixed-point data types from the Embed-

ded C specification is available but has

only been implemented for MIPS thus

far.

G++ now implements more compo-

nents of the next-generation ISO 200x

Standard, or C++0x for short. The

-std=c++0x or -std=gnu++0x

 options enable the standard [6]. G++

now supports templates with a variable

number of parameters and static asser-

tions for this reason. In case of nested

templates, programmers no longer need

to insert blanks between double angle

brackets:

std::vector

<std::vector<int> >

The latest GCC 4.3 is set to take the programming world by storm with new optimizations, experimental

 support for the next-generation C++ 200x standard, an optional parallelized C++ STL, and a new Java com-

piler courtesy of the Eclipse project. BY RENÉ REBE

GCC 4.3

50 ISSUE 92 JULY 2008

The syntax prevents the compiler from

incorrectly identifying a shift operator. In

the future, things like this will also work:

std::vector

<std::vector<int>>

In production use, faster build times are

quite noticeable as less critical includes

have been removed from the C++ STL

header. This might mean developers

 explicitly need to include headers such

as limit.h, string.h, or stdlib.h with their

code [7].

Users with multi-core CPUs will appre-

ciate that some STL classes and algo-

rithms can be parallelized by defining

the _GLIBCXX_PARALLEL macro. On

the other hand, if you use early GNU

STL extensions, such as hash_set or

hash_map, in your programs, you will

have to face the fact that G++ will be

removing them soon; the C++0x stan-

dard envisages tr1/unordered_set, tr1/

hash_set, and the like instead.

In case of inline functions, the new GCC

takes stack growth into account. When

trial runs are performed in the course of

feedback optimization, the C compiler

now uses the block sizes of string opera-

tions such as memcpy(), memset(), and

bzero() to create code for particularly

small blocks. The memcpy() and mem-

set() operations have been reworked so

that GCC now uses the best choice algo-

rithm, depending on the block size and

target CPU.

C++ and object-oriented emulations

in C benefit from an early inline optimi-

zation run, particularly for inline frag-

ments such as access by set() and get()

methods to properties in which the func-

tion code is smaller than its call over-

head. Automatic vectorization is now

enabled by default for -O3 and is said to

be capable of handling complex loops.

Some new optimizations replace legacy,

low-performance algorithms, again

 reducing build times.

One of the biggest changes relates to the

GCJ Java compiler, which the GCC de-

velopers have completely replaced with

the Eclipse Java Compiler.

This radical change means that Java

1.5 is fully supported, making it possible

to create a complete Java stack from

free software with GCC and the Iced Tea

Open JDK fork.

Some Java tools, such as fastjar, have

been lost because of the move, but gjar

is provided as a replacement. Others,

such as gcjh, have been completely re-

worked and do not support the full set of

arguments supported by earlier versions.

For the Linux Magazine speed tests,

I used an Apple Mac Pro with an Intel

Xeon, 3GHz clock speed, and 8GB RAM

with a Linux system running in x86

64-bit mode.

The good news is that build times are

again below the values achieved by the

previous version. Figure 1 shows a com-

parison between GCC 4.2 and 4.3. The

new compiler is just slightly slower

if you disable optimization altogether

(with the -O0 flag).

The resulting programs typically run

slightly faster – the benchmarks in

 Figure 2 show improvements after the

decimal point. The step backward the

previous version took in program size

optimization (-Os) seems to be a thing of

the past, probably because of the inline

heuristics referred to earlier. p

(in seconds – smaller is better)

70.6

69.7

13.4

13.3

26.7

14.6

13.1

13.1

13.0

13.2

Botan

13.3

13.3

6.10

6.10

5.74

5.93

5.67

5.62

5.61

5.58

Bzip2

10.2

10.2

5.25

5.30

5.50

4.92

5.11

5.11

5.12

5.05

Gzip

89.1

89.8

38.8

38.0

38.9

38.4

37.6

37.1

37.2

36.5

Lame

108.4

109.4

3.09

3.30

7.03

3.59

2.91

3.27

2.44

2.72

Tramp3d

GCC 4.2.0 »-O0«

GCC 4.3.0 »-O0«

GCC 4.2.0 »-O1«

GCC 4.3.0 »-O1«

GCC 4.2.0 »-Os«

GCC 4.3.0 »-Os«

GCC 4.2.0 »-O2«

GCC 4.3.0 »-O2«

GCC 4.2.0 »-O3«

GCC 4.3.0 »-O3«

(in seconds – smaller is better)

49.7

52.6

93.0

71.9

79.3

67.9

118.3

87.5

124.5

94.0

Botan

0.98

1.01

2.10

1.98

2.08

2.04

2.93

3.94

3.44

5.24

Bzip2

0.54

0.54

1.09

1.00

1.24

1.12

1.35

1.35

1.60

1.78

Gzip

7.3

7.8

11.8

11.8

12.7

12.4

15.4

16.1

17.9

20.3

Lame

10.0

14.5

32.6

25.8

21.0

18.7

42.9

34.9

44.4

38.3

Tramp3d

GCC 4.2.0 »-O0«

GCC 4.3.0 »-O0«

GCC 4.2.0 »-O1«

GCC 4.3.0 »-O1«

GCC 4.2.0 »-Os«

GCC 4.3.0 »-Os«

GCC 4.2.0 »-O2«

GCC 4.3.0 »-O2«

GCC 4.2.0 »-O3«

GCC 4.3.0 »-O3«

[1] GCC: http:// gcc. gnu. org

[2] Changes compared with the previ-

ous version: http:// gcc. gnu. org/

 gcc-4. 3/ changes. html

[3] MPFR library: http:// www. mpfr. org

[4] Direction flag handling by the Linux

kernel: http:// nvd. nist. gov/ nvd. cfm?

 cvename=CVE-2008-1367

[5] Decimal floating-point arithmetic:

http:// www2. hursley. ibm. com/

 decimal/

[6] C++ 200x (0x) status: http:// gcc. gnu.

 org/ gcc-4. 3/ cxx0x_status. html

[7] Overview of source code modifica-

tions for GCC 4.3: http:// gcc. gnu. org/

 gcc-4. 3/ porting_to. html

INFO René Rebe is the CEO of Exactcode,

in Berlin, Germany, and is involved

with various open source projects.

Find out more about the author and

his projects on his blog at: http://

rene.rebe.name/

T
H

E
 A

U
T

H
O

R

GCC 4.3

51ISSUE 92JULY 2008

