
Linux admins often benefit from
capturing system performance
metrics such as disk utilization,

CPU usage, and memory usage. A handy
performance chart helps in diagnosing
problems and analyzing traffic issues.

Multi-Router Traffic Grapher (MRTG)
[1] lets you collect and graph network
and performance data from Linux hosts.
MRTG is an open source graphing tool
that collects and displays statistics from
SNMP-based network devices.

Commercial tools, such as HP’s Open-
View or IBM’s Tivoli, as well as open
source utilities, such as Cacti and Zenoss
(a beefed-up version of MRTG), serve a
similar role, but in my opinion, MRTG is
the best solution for trending and col-
lecting server performance data.

set Up
Setting up MRTG and SNMP is not for
the faint of heart, especially if you
choose to compile all of the necessary
software packages from source. Check
your package management system to see
whether MRTG packages are available
for your distribution. If not, you’ll find

source code at the website of MRTG cre-
ator Tobi Oetiker [1].

simple Network Monitoring
Protocol
SNMP is the protocol beneath the magic
pictures drawn by MRTG. This article as-
sumes you have some basic knowledge
of SNMP. If not, the Internet has abun-
dant information on the somewhat ar-
chaic but incredibly powerful SNMP net-
work protocol. For more information on

how to get SNMP up and running on a
Linux host, look online [2].

Installing MRTG
See the box titled “MRTG Prerequisites”
for information on the background com-
ponents required by MRTG. Once you
have installed the prerequisites, down-
load the MRTG source code [1].

Unzip and untar the installation pack-
age from a temporary installation direc-
tory, and run the following commands:

MRTG generates simple graphs for viewing

network performance at a glance.

BY MATTHEW D. SACKS

Visualizing system performance with MRTG

PICTURES

Before you try to install MRTG, make sure
you have the following:

•	 	GCC	–	The	GNu	C	compiler	[3]	comes	
pre-installed	on	most	free	unix	and	
Linux	distros.	If	it	isn’t	available	by	de-
fault,	look	for	the	package	using	your	
distro’s	package	management	system.

•	 	Perl	–	Large	parts	of	the	MRTG	system	
are	written	in	the	Perl	scripting	lan-
guage.	Make	sure	a	recent	copy	of	Perl	
is	on	your	machine	(try	perl ‑v).	At	least	
version	5.005	is	required	for	MRTG	to	
work	well.	If	you	use	SNMPV3	and	
other	new	features,	use	at	least	5.8.

•	 	GD	–	The	GD	graph	drawing	library	was	
created	by	Thomas	Boutell	[4].	Note	
that	all	releases	after	version	1.3	only	
create	PNG	images.	Thomas	got	into	
trouble	because	the	GIF	format	that	GD	
used	to	use	requires	a	compression	
technology	patented	by	unisys.	MRTG	
can	work	with	old	and	new	versions	of	
the	GD	library.

•	 	libpng	–	This	is	required	by	GD	in	order	
to	produce	PNG	graphics	files	[5].

•	 	zlib	–	zlib	is	needed	by	libpng	in	order	
to	compress	the	graphics	files	you	cre-
ate	[6].

MRTG Prerequisites

jeff M
etzg

er, Foto
lia

a
MRTGCoveR sToRy

26 ISSUE 92 JuLy	2008

tar ‑xvzf mrtg.tar.gz
cd mrtg‑2.15.2
./configure ‑‑prefix=U
/usr/local/mrtg‑2.15.2

You might want to make a symbolic link
to reference the latest build, which will
allow for easy upgrades or testing new
versions by just changing the symbolic
link:

ln ‑s /usr/local/mrtg‑2.15.2 U
/usr/local/mrtg

If the MRTG configuration script can’t
find some dependency, you might re-
ceive an error message similar to the
message shown in Listing 1.

It is a good idea to download all of the
latest stable versions of the software
libraries that the MRTG configure script
is complaining about, even if they al-
ready appear to be present on the host.
MRTG will then have access to the latest
code with the fewest (hopefully) bugs.

Configuring the MRTG
Instance
To compile MRTG, change to the direc-
tory with the MRTG installation source:

cd /tmp/mrtg_source
./configure ‑prefix=U
/usr/local/mrtg‑2.15

If any library dependencies were com-
piled from source, modify your configu-
ration script parameters to include these
dependency libraries. For example, if the
GD software library was downloaded
and installed from source, modify your
configure script as follows:

./configure ‑prefix=U
/usr/local/mrtg‑2.15 U
‑‑with‑gd‑lib=U
/usr/local/gd‑2.0.34 U
‑‑with‑gd‑inc=U
/usr/local/gd‑2.0.34/lib
make
make install

to include the GD library.

Modifying the Config Files
for Performance
This article will use two Linux hosts as
examples: Tux and Grapher. Tux is the
Linux host from which we want to col-

lect and graph performance data, and
Grapher is the Linux host running
MRTG.

MRTG configuration files are complex
and cumbersome to edit by hand, which
is why MRTG comes with an easy-to-use
configuration script. The cfgmaker con-
figuration script offers many options.
Use cfgmaker to populate the mrtg.conf
file with the necessary data for generat-
ing basic graphs. The most basic cfg‑
maker command-line arguments are
shown in Table 1. Before executing the
cfgmaker script, create a directory for
holding MRTG configuration files, be-

cause you might use a number of differ-
ent configurations on a single host:

mkdir /usr/local/mrtg/cfg

Execute the cfgmaker script as follows:

/usr/local/mrtg/bin/cfgmaker U
‑‑community=public ‑‑global U
Options[_]:U
growright,avgpeak,printrouter U
‑‑global Workdir:U
/usr/local/apache2/htdocs U
‑‑output=/usr/local/mrtgU
/cfg/mrtg2.cfg Tux

Option	 Description
community	 Defines the SNMP community name.
global	 Defines the global configuration parameters for every host configured.
Workdir	 �The directory where the HTML and graph images will be stored (preferably

in your web server’s content directory).
output	 �Defines where the MRTG configuration file will be created. Add the host-

names or IP addresses of the servers to be polled at the end of the cfgmaker
script separated by spaces. In this case, we have only one host to be polled,
Tux.

Table 1: cfgmaker Command-Line Options

01 �** Ooops, one of many bad things happened:

02 �

03 � a) You don't have the GD library installed.

04 � Get it from http://www.boutell.com, compile it, and

05 � use either ‑‑with‑gd‑lib=DIR or ‑‑with‑gd‑inc=DIR to specify

06 � its location. You might also have to use ‑‑with‑z‑inc,

07 � ‑‑with‑z‑lib and ‑‑with‑png‑inc, ‑‑with‑png‑lib for gd

08 � versions 1.6 and higher. Check config.log for more

09 � information on the problem.

10 �

11 � b) You have the GD library installed, but not the gd.h

12 � header file. Download the source (see above) and use

13 � ‑‑with‑gd‑inc=DIR to specify where the file can be found.

14 �

15 � c) You have the library and the header file installed, but

16 � you also have a shared GD library in the same directory.

17 � Remove the shared library files and/or links (e.g.,

18 � libgd.so.2.0.0, libgd.so and libgd.so.2). This is especially

19 � likely if you're using a recent (post 1.8.4) version of GD

20 � and didn't configure it with ‑‑disable‑shared.

21 �

22 d) You have the GD library installed and also its headers, but
 you are

23 � missing libpng (and headers) or freetype (and headers)

24 � (MRTG does not use freetype, but if your copy of GD is
 precompiled

25 � against it, you have to install it ...)

Listing 1: MRTG Configuration Problems

Cover storyMRTG

27ISSUE 92July 2008

As I explained earlier in this article,
MRTG receives its information through
SNMP. The SNMP protocol organizes de-
vice addressing information in a hierar-
chical structure known as a Management
Information Base (MIB). The following
example assumes the UCD-SNMP MIB is
loaded and data can be polled using this
MIB definition. In order to test whether
or not the UCD-SNMP MIB is available,
check your SNMP installation to verify
that it is loaded.

UCD-SNMP MIB Test
A quick way to test whether the UCD-
SNMP MIB is available is by using the
following command against the Linux
server you are polling:

snmpwalk ‑v1 ‑c U
public hostname U
ssCpuRawUser

This command queries the CPU usage
number for user time against the target
host.

If this command fails, check to see if
SNMP is running on the target host and
ensure that the syntax of the snmpwalk
command is correct (see the snmpwalk
man page). Also, make sure the UCD-
SNMP MIB is installed.

Monitoring CPU Usage
Now that you have generated a standard
mrtg2.cfg file using the cfgmaker script,
you must manually edit mrtg2.cfg in
order to graph resource statistics such
as memory, disk, and CPU usage.

The MRTG website has excellent docu-
mentation on all of the different parame-
ters for configuring MRTG.

This example describes how to create
a very simple template to chart CPU
usage.

The UCD-SNMP MIB lets you monitor
a wide range of additional performance-
related settings. To see what is available,
check out the MIB definition [7].

To add a parameter such as CPU usage
to the MRTG configuration, start by cre-
ating the following directories to house
the new custom configurations:

mkdir /etc/mrtg
mkdir /etc/cron.mrtg

Then create a cpu.cfg file to monitor
the CPU load using the contents shown
in Listing 2. Create a cron job file for the
CPU monitoring job:

vi /etc/cron.mrtg/cpu

with the following contents:

#!/bin/sh
env LANG=C U
/usr/local/mrtg/bin/mrtg U
/etc/mrtg/cpu.cfg

With the following command, make the
cpu.cfg file executable:

chmod +x /etc/cron.mrtg/cpu

To generate some graph data, execute
the script about three times:

sh /etc/cron.mrtg/cpu

(You might encounter some warnings
that you can safely ignore.) To view the
results, create the index file using the
indexmaker script:

indexmaker ‑‑output=U
/usr/local/apache2/htdocsU
/mrtg/cpu_index.html U
‑‑title="CPU Usage" U
‑‑sort=name U
‑‑enumerate /etc/mrtg/cpu.cfg

Finally, add a super cron containing the
custom OIDs:

Thank you to Tobi Oetiker for giving
permission to reprint installation and
pre-requisite information from his web-
site [1] – and for making such a useful
networking tool. Thank you to Safdar
Husain for taking the time to show me
the world of Systems Administration.

Credits

01 �## Graph Tux CPU ##

02 �WorkDir: /usr/local/apache2/htdocs/mrtg

03 �LoadMIBs: /usr/share/snmp/mibs/UCD‑SNMP‑MIB.txt

04 �Target[Tux.cpu]:ssCpuRawUser.0&ssCpuRawUser.0:linux‑magazine@Tux +

05 �ssCpuRawSystem.0&ssCpuRawSystem.0:public@Tux +

06 �ssCpuRawNice.0&ssCpuRawNice.0:public@Tux

07 �RouterUptime[Tux.cpu]: public@Tux

08 �MaxBytes[Tux.cpu]: 100

09 �Title[Tux.cpu]: CPU Load

10 �PageTop[Tux.cpu]: <H1>Active CPU Load %</H1>

11 �Unscaled[Tux.cpu]: ymwd

12 �ShortLegend[Tux.cpu]: %

13 �YLegend[Tux.cpu]: CPU Utilization

14 �Legend1[Tux.cpu]: Active CPU in % (Load)

15 �Legend2[Tux.cpu]:

16 �Legend3[Tux.cpu]:

17 �Legend4[Tux.cpu]:

18 �LegendI[Tux.cpu]: Active

19 �LegendO[Tux.cpu]:

20 �Options[Tux.cpu]: growright,nopercent

Listing 2: cpu.cfg

Figure 1: A graph of normal CPU usage pattern.

MRTGCover story

28 ISSUE 92  July 2008

*/5 * * * * /bin/run‑parts U
/etc/cron.mrtg 1> /dev/null

To graph any other system metrics, such
as memory, average users, and disk
usage, consult the USD-SNMP MIB defi-
nition [7] and simply repeat the preced-
ing steps, modifying the OID and graph
legend parameters.

Polling
Now you have created a template for
configuring custom system-resource-spe-
cific graphs for performance data. The
next step is to choose a polling interval
for collecting the data. Do this by plug-
ging the path to the MRTG binary and
executing it on the desired interval using
cron.

To edit the crontab, type crontab ‑e
and add the following entry:

0,5,10,15,20,25,30,35,40,U
45,50,55 * * * * env LANG=C U
/usr/local/mrtg/bin/mrtg U
/usr/local/mrtg/cfg/mrtg2.cfg

This entry will run the MRTG binary
every five minutes and will populate the
graphs. If a cron job is not set up to exe-
cute the MRTG binary, graph data will
not be populated. You can adjust the
polling interval as desired, but keep in
mind that the less frequently polling oc-
curs, the less accurate the graph will be.

Depending on how your web server
is set up, you may have to reference the
specific filename that was generated by
the MRTG scripts.

In this example, Apache was used and
the files were generated in the WorkDir
directory.

Displaying Performance
Graphs
The indexmaker tool created an index
file, which you will find in /usr/local/
apache2/htdocs/mrtg/cpu_index.html.
Open this URL in a browser to see the
CPU graph.

Displaying Bandwidth
Graphs
Filenames are sometimes generated au-
tomatically, so it is best to look in the
output directory for the filename, and
then input that filename into the
browser URL.

Now after all of this hard work, you
should have beautifully crafted graphs
and a global summary view of a single
system. By re-running indexmaker or
customizing a portal that displays dy-
namically created PNG images, you can
scale your MRTG installation to include
performance metrics and data from a
small to large enterprise infrastructure.

RRDtool, the round robin database
tool [8], will allow better performance
and more customization of MRTG

graphs. Use RRDtool when deploying
MRTG to a large number of Linux hosts.

Interpreting the Graphs
Generally speaking, MRTG graphs are
most effective when viewed and inter-
preted on a regular basis. It is best to re-
cord some sort of baseline graph and use
that as a comparison when troubleshoot-
ing or investigating problems.

For example, Figure 1 shows a group
of servers under normal load. (Note that
the ability to aggregate multiple servers
onto a single graph like this is a feature
of RRDtool, which is an add-on to
MRTG.) Most of the time, a consistent
pattern develops on the graph over time.

If a spike occurs at midnight on the
server CPU graph (Figure 2), one possi-
ble explanation is a backup job sched-
uled at midnight. Another possibility is
that there was some kind of attack on
the server farm. In order to decide be-
tween these two scenarios, you can com-
pare the CPU usage graphs against the
network traffic graphs (Figure 3).

The network graph shows no spike in
network traffic at the same time as the
server CPU usage graph, so it is safe to
say there was no external attack on the
server farm. The next step would be to
investigate the server or backup logs to
see whether some sort of scheduled job
was executed at this time.

Conclusion
MRTG lets the system administrator
quickly pinpoint and investigate changes
in system performance.

In this article, I've shown just a small
fraction of the possibilities for graphing
data and troubleshooting system perfor-
mance with MRTG. n

[1]	 �MTRG: http://​oss.​oetiker.​ch/​mrtg/

[2]	 �Net-SNMP:
http://​www.​net‑snmp.​org

[3]	 �GCC: http://​gcc.​gnu.​org

[4]	 �GD library:
http://​www.​boutell.​com/​gd/

[5]	 �libpng: http://​www.​libpng.​org/​pub/​
png/​libpng.​html

[6]	 �zlib: http://​www.​gzip.​org/​zlib

[7]	 �UCD-SNMP MIB definition:
http://​www.​oidview.​com/​mibs/​2021/​
UCD‑SNMP‑MIB.​html

[8]	 �RRDtool: http://​oss.​oetiker.​ch/​rrdtool

INFO

Figure 2: An abnormal spike appears in the CPU usage graph.

Figure 3: A quick check of the network usage graph shows that the spike wasn’t caused by

network traffic.

Cover storyMRTG

29ISSUE 92July 2008

