
The Nagios monitoring tool is a
general framework for watching
things. Nagios lets you keep an

eye on computers, processes, devices,
and network services. Another thing
Nagios can watch is logfiles. The Nagios
plugin collection comes with a number
of options for monitoring logs. The
check_log and check_log2 plugins, for
example, are popular with many ad-
mins; however, these plugins sometimes
have problems in situations in which an
application or script is rotating the logs.
The tools tend to slip up occasionally
and miss a couple of lines, which is
something you can’t allow if you need
100% coverage. To close the gaps, the
check_logfiles plugin [1] was developed
to check every single entry – even if a
log moves, changes its name, or disap-
pears into a compressed archive during
the monitoring period.

But that’s not all: A number of other
sophisticated features set check_logfiles
apart from its predecessors. For example,
check_logfiles can work with multiple
search keys, handle exceptions that iden-
tify a special subset of a search key as
harmless, apply thresholds that trigger
alerts after a minimum number of
matches, and integrate external pro-
grams.

In this article, I show you how to start
monitoring logfiles with the Nagios
check_logfiles plugin. To begin, I’ll as-
sume you have some basic knowledge of
Nagios. If you’re looking for more back-
ground on the Nagios monitoring tool,
see the Nagios workshop from the June
2007 issue of Linux Magazine [2].

Installation
The check_logfiles plugin is available as
a tarball [1]. After unpacking, change to

directory check_logfiles‑2.3.1.1 and fol-
low the standard configure; make; make
install steps to build and install the pl-
ugin.Various options are available for
the configure step (see the box titled
“Configure Options”).

First Case
Once you have installed and configured
the check_logfiles plugin, you’re ready
to put it to work monitoring logfiles.

For a first look at check_logfiles in
 action, consider the following example,
which performs a simple search for the
BIGERROR string in a file titled rhubarbo‑
mat.log. The call to the plugin looks like
this:

check_logfiles U
‑criticalpattern=U
'BIGERROR'‑logfile=U
rhubarbomat.log

The Nagios check_logfiles plugin helps you monitor your logfiles – even if the logs rotate and change names.

By Gerhard LauSSer

Log file analysis with the Nagios check_logfiles plugin

Log TraveLer

A
x
el Teich

m
a
n

n
, Foto

lia

check_logfilesCover sTory

32 ISSue 92 July 2008

If the string BIGERROR occurs in a line
that was added after the last check_log‑
files run, the plugin returns a CRITICAL
status; if not, it returns OK. The string is
actually a regular expression.

Instead of ‑criticalpattern, you could
use ‑warningpattern, as in ‑‑warning
pattern='SMALLERROR'. The exit code
for a successful search is 1 for WARN‑
ING. Of course, nothing stops you you
from using both options at the same
time.

This initial example does not take log-
file rotation into account. Although the
plugin would identify the search key, it
would not search logfiles that had been

rotated out, but would, instead, simply
focus on the latest file.

To allow the search to cover logfiles
rotated between two calls to check_log‑
files, and thus to avoid gaps, the plugin
needs a hint as to where to find the older
files.

The parameter that handles this is ‑ro‑
tation, which either passes in the new
file name or contains a regular expres-
sion that matches the rotated file names
(Figure 1). First assume the rhubarbo‑
mat.log file is automatically renamed
rhubarbomat.log.0 on a daily basis and
that an empty rhubarbomat.log file is
created. After this, what used to be rhu‑
barbomat.log.0 is renamed rhubarbomat.
log.1, what used to be rhubarbomat.
log.1 is renamed rhubarbomat.log.2, and
so on. In this case, the ‑logfile=/var/log/
rhubarbomat.log
‑rotation='rhubarbomat\.log\.\d+' pa-
rameter would let the plugin find and
search the previous versions. As an alter-
native, you could explicitly specify the
file name rhubarbomat.log.0.

The check_logfiles plugin only investi-
gates lines in the logfile that have

changed since the plugin was last called,
and this means that re-running the pl-
ugin will return different results. After
returning a CRITICAL result, the next
call is to revert OK, as Listing 1 shows.
A service definition for Nagios is given
in Listing 2.

Configuration File
Where check_logfiles really shines is
when you use a configuration file in-
stead of command-line parameters.
The previous example would require
the following configuration file:

$ cat rhubarb.cfg
@searches = ({
 tag => '0815',
 logfiles => U
'/var/log/rhubarbomat.log',
 criticalpatterns => '.*0815.*',
 rotation => 'loglog0log1',
 options => 'noprotocol'
});

The plugin is then called by a check_log‑
files ‑f configfile_name command line. It
is easy to see that the configuration file

‑‑with‑perl if you prefer a separate Perl
installation.

‑‑prefix specifies the home directory of
your Nagios installation. The plugin is
installed in the /libexec subdirectory.

‑‑with‑seekfiles‑dir specifies the direc-
tory in which to save status information
between program runs.

Configure Options

01 define service {

02 service_description check_0815msgs

03 host_name logserver

04 max_check_attempts 1

05 is_volatile 1

06 check_command

07 check_logfiles_critical!0815!/var/log/
 rhubarbomat.log!loglog0log1!.*0815.*

08 }

09 define command {

10 command_name check_logfiles_critical

11 command_line $USER1$/check_logfiles $$

12 ‑‑logfile="$ARG2$"

13 ‑‑criticalpattern="$ARG4$" ‑‑tag="$ARG1$" $$

14 ‑‑rotation="$ARG3$"

15 }

Listing 2: Service Definition

01 $ logger "test1 this is 0815"

02 $ logger "this isn't because its 0916"

03 $

04 $ check_logfiles ‑logfile=/var/log/
rhubarbomat.log ‑‑tag=0815 ‑criticalpattern=
'.*0815.*' ‑‑rotation='loglog0log1'

05

06 CRITICAL ‑ (1 errors in check_logfiles.
protocol‑2007‑10‑10‑15‑10‑02) ‑ Oct 10 15:09:56
localhost lausser: test1 das ist doch 0815 |0815_
lines=2

07 0815_warnings=0 0815_criticals=1
0815_unknowns=0

08 $

09 $ echo $?

10 2

11 $

12 $ logger "rhubarb"

13 $ check_logfiles ‑logfile=/var/log/
rhubarbomat.log ‑‑tag=0815 ‑criticalpattern=
'.*0815.*' ‑‑rotation='loglog0log1'

14

15 OK ‑ no errors or warnings |0815_lines=1
0815_warnings=0 0815_criticals=0

16 0815_unknowns=0

17 $ echo $?

18 0

Listing 1: Recurring Calls

Cover sTorycheck_logfiles

33ISSue 92July 2008

is made up of Perl code. The elements in
the @searches array (which I will just
refer to as “the search”) are hash refer-
ences that combine the logfile and
search key. The tag is a unique identifier
for the combination. The plugin requires
this to disambiguate the files that store
the status information for the next
check_logfiles run. An array makes it
possible to search multiple logfiles with
a single call to check_logfiles.

The Perl code for this configuration is
shown in Listing 3.

On the other hand, if you want the
 plugin to raise the alarm if a search key

is missing from the logfile, the search
pattern must start with an exclamation
mark (!). The following syntax tells you
whether the late-night backup has com-
pleted without errors:

criticalpatterns => U
['!backup successful']

Also, you can define exceptions that
look like the message you are searching
for but represent a special case:

criticalpatterns => U
['SCSI Error'],

criticalexceptions => U
['SCSI Error. *disk0 .*'],

These entries would raise a Nagios
alarm for the SCSI Error /dev/disk5 I/O
Timeout line, but they tell the plugin to
ignore SCSI Error /dev/disk0 I/O Time‑
out.

rotation
At the end of each run, the plugin stores
the last position it has read in the logfile,
along with the change date and the file’s
inode number. This information is
stored in what is known as a seek file.
check_logfiles generates the name of the
seek file from the logfile name and the
day.

The next time the plugin is called, it
compares this data with the properties
of he current logfile and checks that the
logfile has been expanded, deleted,
 rotated, or created as a new file.

In case of rotation, the plugin searches
for the rotated archive, which it has to
read to ensure seamless monitoring
 coverage.

Depending on how long ago the last
plugin launch was, several rotations
might have occurred. The plugin uses
the timestamp and the rotation parame-
ter to find matching files.

In most cases, the logfile has grown by
just a couple of lines. check_logfiles con-
tinues at the position that it tagged at the
end of the last run and reads the follow-
ing lines until it reaches the end of the
file (Figure 2). This design gives the

01 @searches = (

02 {

03 tag => 'lamp‑apache'

04 logfile => '/var/log/apache/error.log',

05 criticalpatterns => ['.*error.*, '.*fatal.'],

06 rotation => 'solaris'

07 },

08 {

09 tag => 'lamp‑mysql',

10 logfile => '/var/log/mysql.log',

11 criticalpatterns => ['corruption',
 'you hit a bug']

12 }

13);

Listing 3: Sample Configuration

01 @searches = (

02 {

03 tag => 'host0',

04 logfile => '/sys/class/scsi_host/host0/state',

05 type => "virtual",

06 criticalpatterns => [

07 'Link [^Up]+' # Alarm, wenn nicht "Link Up"
drinsteht

08],

09 options => 'noprotocol',

10 },

11);

Listing 4: Searching virtual Logfile Types

Figure 1: Logfile rotation makes life difficult for some plugins. Entries can get lost because of

copying or renaming.

loglogdate8gz

loglog0log1gz

loglog0gzlog1gz

loglog0log11

hpux

mod_log_rotate

log

log

log

log

log

log.1191953149

log.1191934833

log.1191900729
Rotation

Logging

OLDlog

log-20071116.gz

log-20071115.gz

log.0

log.0.gz

log.0

log.1.gz

log.1.gz

log.1

check_logfilesCover sTory

34 ISSue 92 July 2008

 plugin an enormous speed advantage
compared with other approaches that
rely on diff to ascertain the differences
between the current logfile and a stored
copy, especially in the case of rapid log-
file growth.

By entering ./configure with‑seek‑
file‑dir, you can specify a directory for
the seek files, or you can change the
path on the fly with the $seekfilesdir
variable in the configuration file.

The plugin uses /tmp by default; how-
ever, it makes sense to change this to
/var/tmp because some operating sys-
tems do not keep the content of /tmp on
reboot.

Types
In addition to the rotation parameter,
you can also search on the type parame-
ter, which specifies the type of logfile. If
the rotation parameter exists, type as-

sumes a value of rotation. This means
that the archive files are relevant to the
search. If the rotation parameter does
not exist, type assumes a value of sim‑
ple. The setting makes sense if an appli-
cation continually generates new logfiles
and deletes the existing files or if the ad-
ministrator is prepared to accept the fact
that the last few lines in a rotating logfile
will not be taken into consideration.

The virtual logfile is another type that
check_logfiles will search. This type is
used, say, for the /proc filesystem on
Linux machines (and this gives you the
option of setting up hardware monitor-
ing simply).

The files in this filesystem do not
grow; instead, you need to treat them as
if they had been created immediately be-
fore reading. The plugin always investi-
gates these logfiles from the first line
down (see Listing 4).

Also, the errpt type searches the AIX
Error Report. This tells the plugin to
search for patterns in the output from
the errpt command, just as if it were a
normal logfile. The psloglist type is still
experimental; it lets the plugin search
the event log on a Windows machine.

search Parameters
Several parameters are available for pat-
terns to search the logfiles. The most
 important parameters are listed in the

01 @searches = (

02 {

03 tag => 'minor_errors',

04 type => 'errpt',

05 criticalpatterns => ['ADAPTER ERROR',

06 'The largest dump device is too small.',

07 'The copy directory is too small.',

08 'Kernel heap use exceeds allocation count',

09 'Kernel heap use exceeds percentage thres',

10 'LINK ERROR',

11 'SCSI BUS OR DEVICE ERROR',

12 'SCSI DEVICE OR MEDIA ERROR',

13 'Possible malfunction on local adapter',

14 'ETHERNET DOWN',

15 'UNABLE TO ALLOCATE SPACE IN KERNEL HEAP'

16],

17 }

18);

Listing 6: Searching Multiple Patterns

01 $ cat rhubarb.cfg

02 @searches = ({

03 tag => '0815',

04 logfile => '/var/log/rhubarbomat.log',

05 archivedir => '/var/log/archives',

06 rotation => 'loglog0gzlog1gz',

07 criticalpatterns => '.*0815.*',

08 criticalexceptions => '.*0815 macht aber nix.*',

09 warningpatterns => ['.*failure.*',

'!successful'],

10 warningthreshold => 10,

11 okpatterns => '.*cleared.*',

12 options => 'case,noprotocol,script'

13 script => 'restart_rhubarbomat'

14 });

Listing 5: Parameters in the Configuration File

Figure 2: The Log Checker remembers the file and the position it read to when last called and

continues at exactly that position.

Original situation
»rhubarbomat.log« »rhubarbomaLO.log« »rhubarbomat 1.log.gz«

»check_logfiles« searches to the end of the rhubarbomat.log
file and “remembers” the offset (= file length) and modification
time.

mtime
fsize

More logging
(incl. an error message)

Rotation and
even more logging

2nd run
»check_logfiles« notices the rotation. Based on the
saved modification time, it selects the files that have
changed, or been created, since the last program run.

The files are sorted by modification time.

The program goes to the offset position in the oldest
of these files and searches for patterns up to the end
of the current logfile. The offset and modification time are
again stored.

Cover sTorycheck_logfiles

35ISSue 92July 2008

“Search Parameters” box. A complete list
of all possible parameters can be found
online [1].

The parameters are used in the config-
uration file as shown in the excerpt in
Listing 5.

output and Performance
Data
The output from check_logfiles contains
references to the findings, for example:

CRITICAL ‑ (3 errors in U
check_logfiles.protocol‑2007U
‑10‑10‑16‑21‑09) InnoDB: U
Database page corruption on U

disk or a failed ...|U
mysql_lines=12 U
mysql_warnings=0U
mysql_criticals=3 U
mysql_unknowns=0

Besides the typical Nagios exit code, you
can see the three dots (...), which indi-
cate that more lines with matches exist.

For each search or day, the plugin also
returns a set of four performance statis-
tics:
•	 _lines – The number of lines searched

in the logfile.
•	 _warnings – The number of lines that

contain warning patterns.

•	 _criticals – The number of lines that
contain critical patterns.

•	 _unknowns – The number of lines that
contain unknown patterns.

These parameters give you a quick indi-
cation of the problem density.

Actions
The script option can run a program in
case of a specific match:

script => 'name_of_program'

or in the latest version:

script => sub { perl‑code }

01 $scriptpath = '/usr/bin/nagios/libexec:
/usr/local/nagios/contrib';

02 $MACROS = {

03 CL_NSCA_HOST_ADDRESS => "lpmon1.muc",

04 CL_NSCA_PORT => 5778

05 };

06

07 @searches =(

08 {

09 tag => 'rhubarb',

10 logfile => '/var/log/rhubarbomat.log',

11 criticalpatterns => ['ERROR', 'crashed'],

12 script => 'restart_rhubarbomat',

13 scriptparams => '‑‑rhubarbprefix=bla',

14 options => 'script'

15 },

16 {

17 tag => 'san',

18 logfile => '/var/adm/messages',

19 criticalpatterns => [

20 'Link Down Event received',

21 'Loop OFFLINE',

22 'fctl:.*disappeared from fabric',

23 '.*Lun.*disappeared.*'

24],

25 options => 'script',

26 script => 'send_nsca',

27 scriptparams => '‑H $CL_NSCA_HOST_ADDRESS$
 ‑p CL_NSCA_PORT ‑to $CL_NSCA_TO_SEC$
 ‑c $CL_NSCA_CONFIG_FILE$',

28 scriptstdin => '$CL_HOSTNAME$\t$CL_SERVICEDESC$\
t$CL_SERVICESTATEID$\t$CL_SERVICEOUTPUT$\n',

29 });

Listing 7: Calling Scripts

•	 tag A short unique descriptor for this
search.

•	 logfile The name of the logfile you
want to scan.

•	 archivedir The directory with the
 rotated logfiles.

•	 rotation A regular expression that is
used to locate rotated archive files.
Predefined values exist for the most
common patterns.

•	 criticalpatterns A single pattern that
the plugin searches for in the logfile. If
you want the plugin to search for mul-
tiple patterns belonging to a category,
you need to specify them as the ele-
ments of an array (e.g., see listing 6).

•	 criticalexceptions Support more gran-
ular specification of patterns: The pa-
rameter ignores exceptions that are

not counted as errors.

•	 warningthreshold Thresholds are used
whenever you want to count a certain
number of matches before alerting:
warningthreshold => n means that
every nth match counts.

•	 okpatterns Resets the counter and de-
letes all previously found critical and
warning matches.

•	 nologfilenocry Ignores missing log-
files; otherwise, if the logfile is miss-
ing, the plugin returns a status of
 UNKNOWN.

•	 syslogserver If the logfile contains
messages from multiple servers, the
plugin uses this option to search only
the messages from the local host.

•	 syslogclient=host_name Just like the
server option; however, in this case,

only messages from a specific client
are investigated. This option is inter-
esting for central Syslog servers.

•	 nocase Ignores case in regular expres-
sions.

•	 options Multiple, comma-separated
options give more granular control
over the plugin’s actions. A prefix of
no reverses the meaning.

•	 ‑ nocase Means that the patterns are
case insensitive.

•	 ‑ noprotocol Prevents the plugin from
creating a protocol file. Normally, any
lines in the logfile that contain the
search pattern are written to the proto-
col file. This saves time-consuming
processing in the case of an alert.

Search Parameters

check_logfilesCover sTory

36 ISSue 92 July 2008

Actions include restarting an application
or sending SNMP traps and NSCA mes-
sages. This means that check_logfiles can
run as a standalone application without
relying on the Nagios event handler.

The scriptparams and scriptstdin
 parameters allow users to run external
scripts with command-line parameters –
and even to pass in input from STDIN.
Listing 7 gives an example.

In the example in Listing 7, whenever
an error message appears in a line of the
messages file, the line is sent to the Nag-
ios server with the send_nsca command
as a passive service result.

In the simplest case, the exit code re-
turned by the external script will be irrel-
evant and will not influence the check_
logfiles exit code. For example, even if
the Rhubarbomat application in the ex-

ample in Listing 5 restarts successfully,
check_logfiles will still return a Critical
status to Nagios.

The smartscript option passes the ex-
ternal script’s exit code in to the check_
logfiles result. The plugin acts as if it had
discovered another line after the trigger-
ing line, which had the text that was the
first line in the script output and the
analysis that was the script’s exit code.
This lets you throw an error, but not to
revert the original message in the logfile
or to reevaluate the message.

The third option is supersmartscript.
Scripts of this type overwrite the trigger-
ing match in the logfile with their exit
codes and output, instead of adding an
entry. Several environmental variables
are available for these scripts:
•	 CHECK_LOGFILES_SERVICEOUTPUT –

the content of the triggering line
•	 CHECK_LOGFILES_SERVICESTATE –

WARNING, CRITICAL, or UNKNOWN
•	 CHECK_LOGFILES_SERVICESTATEID –

1, 2, or 3
With the use of this information and
other data – such as the time of day or
the results of the application relaunch –
the error message can then be reevalu-
ated. This lets the logfile checker demote
a CRITICAL status to WARNING or return
an exit code of 0 and thus cancel the
alert. Listing 8 gives an example.

Prescripts and Postscripts
Actions can also be triggered before
starting to search a logfile or after com-
pleting all searches.

The parameter $prescript, which
points to an external script or Perl sub-
routine, helps with triggering actions.
Supersmart prescripts cancel the check_

logfiles run if the exit code is greater
than zero. This makes it possible to
check to see whether a specific process
is running.

If the process is not running, why
bother checking the corresponding ap-
plication logfile for errors? Prescripts can
also force applications to write (flush)
their logfiles, thus making sure that the
data is up to date.

Supersmart postscripts can replace the
check_logfiles results completely, no
matter how many error messages they
originally contained.

Or, if the standard check_logfiles
 output format is not to your liking,
you could run a supersmart postscript
to modify it for better emphasis. n

01 @searches =(

02 {

03 tag => 'rhubarb',

04 logfile => '/var/log/rhubarbomat.log',

05 criticalpatterns => ['ERROR', 'crashed'],

06 script => sub {

07 if (`restart_rhubarbomat` =~ /successful/) {

08 if ($ENV{CHECK_LOGFILES_SERVICEOUTPUT} =~ /
ERROR/) {

09 printf "OK ‑ restarted rhubarbomat\n";

10 return 0;

11 } else {

12 printf "WARNING ‑ restarted crashed
rhubarbomat\n";

13 return 1;

14 }

15 } else {

16 printf "CRITICAL ‑ could not restart
rhubarbomat\n";

17 return 2;

18 }

19 },

20 options => 'supersmartscript'

21 },

Listing 8: Supersmart Script

Besides parameters that relate to a sin-
gle search entry, additional global vari-
ables are read by all searches, defining
the behavior of the plugin independent
of an individual search.

•	 $seekfilesdir Specifies the directory
where files with status information
are saved.

•	 $scriptpath A list of paths the plugin
searches for external scripts, which
it triggers with the script parameter.

•	 $prescript Specifies an external pro-
gram to be executed during startup.

•	 $postscript Specifies an external pro-
gram to be executed before termina-
tion.

•	 $protocolsdir A directory in which
check_logfiles writes protocol files
with the matched lines.

Global Parameters

Gerhard laußer
works for ConSol in
Munich, Germany.
He installed his first
version of linux
back in 1992 from a
pile of floppy disks.
In 2003, Gerhard
managed the linux roll-out for a
major automobile manufacturing
company, where he has since set up
a substantial Nagios installation.

T
H

E
 A

U
T

H
O

R

[1] check_logfiles: http:// www. consol.
 com/ opensource/ nagios/
 check‑logfiles/

[2] “Network Monitoring: Watching
your Systems with Nagios” by Ju-
lian Hein, Linux Magazine, June
2007: http://www.linux‑magazine.
com/issues/2007/79/nagios

INFO

Cover sTorycheck_logfiles

37ISSue 92July 2008

