
The ancient Linux permission system is often insufficient for complex production environments. Access

Control Lists offer a flexible alternative. By Tim Schürmann

Working with Access Control Lists

On the List

IK
O

, Foto
lia

Alice appreciates the convenience
of a PC-based electronic calen-
dar, but to maintain her privacy,

she has set strict permissions for her
calendar file: She can add new appoint-
ments herself, but other members of
her workgroup have read-only access.
Others outside of her workgroup are
not even allowed to look.

This configuration is fine at first, but
one day Bob from another department
agrees to collaborate with Alice. To allow
this to happen, she has to give him ac-
cess to her calendar data.

In this scenario, it is clear that the leg-
acy Linux permission system has out-
lived its usefulness. To allow Bob to read
the file with her calendar data, Alice can
ask the administrator to move the new
colleague into her own group, but this
would allow Bob to view all the other
documents produced by Alice’s team.

Another approach would be to temporar-
ily set up a completely new user group
with both Alice’s and Bob’s accounts as
members. In this simple scenario, a tem-
porary group might be an acceptable so-
lution, but in a real-world enterprise en-
vironment, group management becomes
far more complicated, and the habit of
creating temporary groups on the fly can
lead to too many groups with no good
way of tracking them.

Access Control Lists, or ACLs for
short, promise a solution. They add flex-
ible access control to the legacy Unix
permissions system, letting users add
permissions for any group or users. Alice
doesn’t even need to talk to the adminis-
trator; she can simply put Bob on the list
of authorized users and even specify de-
fault permissions for all new files.

Access Control Lists have been around
for a while, and they are gradually be-

coming part of daily life in many produc-
tion environments; however, the ACL
security structure is still unfamiliar to
many Linux users. In this article, I show
you how to get started with ACLs in
Linux.

Rotating Disks
If you plan to use ACLs, your filesystem
must support extended attributes. Of the
current crop of filesystems, Ext2, Ext3,
Ext4, ReiserFS, JFS, and XFS all have
ACL support. JFS and XFS support ex-
tended attributes by default; for all oth-
ers, you need to stipulate the acl mount
option to enable ACLs:

mount ‑o remount,acl,U
defaults mount_point

Most current distributions set these
parameters by default in /etc/fstab:

Access Control ListsCover story

32 ISSUE 91  JUNE 2008

/dev/hda1 / ext3 acl,U
user_xattr 1 1

For internal disks, you need not change
anything, and ACLs also work over NFS
as of NFSv3, assuming the server has a
filesystem and operating system that
support ACLs.

Kernel Issues
Besides the filesystem, the kernel also
must support ACLs – after all, it is the
kernel that finally grants or refuses ac-
cess to a file. All current kernels in the
2.6 series have ACL support, and patches
exist for the legacy 2.4.x kernel. The
major distributions typically enable ex-
tended attributes for all of the filesys-
tems mentioned previously, allowing
users to start assigning permissions from
scratch. To be sure, just enter the follow-
ing command:

grep "XATTR\|POSIX_ACL" U
/boot/config‑$(uname ‑r)

It should show two entries with =y if
ACLs are supported. Ext2, for example,
would show:

CONFIG_EXT2_FS_XATTR=y
CONFIG_EXT2_FS_POSIX_ACL=y

Otherwise, you have no alternative but
to install a new kernel.

Band of Two
Besides filesystem and Linux kernel sup-
port, you also need a package with ap-
plications that display the ACLs for each
file and modify them as needed. Most
distributions include a package called
acl for this purpose. Two of the programs
it includes are particularly useful:
•	 getfacl displays the ACL for a file, and

•	 setfacl sets or changes the permissions
for a file

Both tools rely on the libattr and libacl
libraries, which many distros install by
default.

History
To begin this study of ACLs, I’ll take a
quick look at the legacy Linux access
control system. Normally in Linux, each
filesystem object distinguishes between
three different roles, which are called
classes in POSIX terminology: the owner
of the file (user), the group the file be-
longs to (group), and all other users
(other). The owner specifies – for each
of the three classes – whether the class
can read, write to, or even execute the
file. The familiar ls ‑l command displays
these permissions as a cryptic list of let-
ters:

‑rw‑r‑‑r‑‑ 1 alice ateam U
5410 7. Feb 11:21 calendar.cal

In this case, alice is the owner and her
group is called ateam. ls appreciates
read, write, and execute commissions to
their first letters: rread, write, and exe-
cute. Thus, for each class of users, a trip-
let of access permissions is used in rwx
format. A dash (‑) at any position means
that the operation is forbidden.

Minimalism
Imagine an ACL as a piece of paper on
which you jot a list of all other access
permissions and the rights assigned to
them. Linux staples the results onto the
file and enforces the permissions on the
list. In practice, Alice first checks which
permissions are already assigned for her
calendar. She uses getfacl to do so; the
command outputs the ACL for a file.
Because she has not yet added Bob, his
list should be empty:

$ getfacl calendar.cal
file: calendar.cal
owner: alice
group: ateam
user::rw‑
group::r‑‑
other::r‑‑

For a list that should really be empty,
this has quite a few entries.

First, getfacl repeats the file name, the
owner of the file, and the group in the

first three lines. The following lines each
contain exactly one entry from the ACL;
this is aptly known as an Access Control
Entry (ACE). To retain downward com-
patibility with legacy systems, the ACL
automatically maps existing permissions
to entries in the list – this explains the
three following lines in the above exam-
ple. The first line shows the owner’s per-
missions, the second shows permissions
for the group, and the third shows those
for all other users.

The entries thus precisely match what
ls ‑l told us. Because these entries exist
in any ACL, they are referred to as the
minimal ACL. As soon as an entry is
added, this is referred to as an extended
ACL.

Setting ACEs
To grant Bob access to the calendar,
Alice needs to set another entry for this
ACL. The setfacl tool takes care of this:

setfacl ‑m user:bob:rw‑ U
calendar.cal

The parameters only appear cryptic at
first glance: the above command line
creates a new entry (‑m) in the ACL for
the calendar.cal file. Access is granted to
a single user called bob. Bob can read
and write to the file, but he can’t execute
it (rw‑). getfacl outputs the resulting list:

$ getfacl calendar.cal
file: calendar.cal
owner: alice
group: ateam
user::rw‑

You might stumble across the term
POSIX (Portable Operating System In-
terface) ACLs on the Internet and in doc-
umentation. Although various drafts
appeared at the end of the last century
(POSIX 1003.1e, commonly referred to
as POSIX.1e, and 1003.2c), for several
reasons, the drafts were never ap-
proved. Most ACL implementations are
still oriented on these drafts. To under-
line the close connection, many authors
use the term POSIX ACLs [1].

POSIX and ACLs

Windows, as of XP, and the NT operat-
ing system family also support ACLs,
but only with the NTFS filesystem. Al-
though access to NTFS on Linux is typi-
cally possible, Linux has only limited
support for its extended functionality,
which unfortunately includes ACLs.

At least Samba supports ACLs, assum-
ing the underlying system has support
for extended permissions. Files stored
on the Samba server keep their permis-
sions as if they were stored on a normal
NTFS drive. One problem remains:
Because the ACLs use by Windows and
Linux differ, Samba currently gives
Windows users only a part of the func-
tionality they are used to.

Windows and ACLs

Cover storyAccess Control Lists

33ISSUE 91JUNE 2008

user:bob:rw‑
group::r‑‑
mask::rw‑‑
other::r‑‑

Each entry in an ACL follows the same
pattern, starting with the type, which
specifies to whom the following permis-
sions were applied. This can be a single
user or a whole group. A label follows
the colon. This designates the name of
the user or group the entry belongs to.
In cases in which you do not need this
name, you can simply omit it – you can
see an example of this in the entries for
standard permissions. The line ends
with the familiar triplet of permissions.

Who Has Rights?
In the course of the project, Alice needs
to grant the other members of Bob’s

group short-term access to her calendar.
To do so, she simply adds an entry for
bteam:

setfacl ‑m group:bteam:r‑‑ U
calendar.cal
$ getfacl calendar.cal
file: calendar.cal
owner: alice
group: ateam
user::rw‑
user:bob:rw‑
group::r‑‑
group:bteam:r‑‑
mask::rw‑‑
other::r‑‑

When read access for a file is requested,
Linux simply checks permissions one
after another.

First, the kernel checks to see whether
the user has an entry, and if so, Linux
applies the permissions defined by the
entry. In the example here, Bob is
granted read and write access to the cal-
endar. In contrast, a personal entry does
not exist for Carl, so Linux checks group
permissions. Because Carl is a member
of bteam, he is given read access. The
kernel is unable to find a personal or
group entry for the staff from accounts;
in this case, standard Unix permissions
apply.

Legacy
Unfortunately, ls ‑l does not display ex-
tended permissions. Instead, a single
plus sign indicates the existence of ex-
tended permissions:

$ ls ‑l calendar.cal
‑rw‑r‑‑r‑‑+ 1 alice ateam U
5410 7. Feb 11:21 calendar.cal

Because the ACLs map standard Unix
permissions, setfacl also replaces the
good old chmod command. You simply
have to change the entries. For example,
the command

setfacl ‑m other::rw‑ U
calendar.cal

grants read and write access for the file
to all other users, including accounts:

‑rw‑r‑‑rw‑+ 1 alice U
ateam 5410 7. U
Feb 11:21 calendar.cal

Every extended ACL contains a fairly
ominous looking mask entry. The mask
describes the maximum permissions the
user can be granted.

If the mask defines a more restrictive
permission set than is granted to a user
in an ACE, the mask always takes prior-
ity. For example, Alice could have
granted other members of Bob’s group
access to her calendar.

If she now wants to temporarily re-
voke these permissions, she would have
to modify them for each member of the
group; alternatively, she can just modify
the mask:

setfacl ‑m mask::r‑‑ U
calendar.cal

No matter what permissions the users
have beforehand, from now on, they can
only read the calendar. Of course, this
applies to Bob too. Although he still has
write permissions for the calendar, the
mask takes priority, leaving him with
just three permissions.

Under the hood, Linux performs a log-
ical AND operation to calculate effective
rights. To be able to read a file, the user
or group thus needs read permissions
and read permissions must exist in the
mask.

To avoid administrators losing track,
getfacl outputs the effective actual per-
missions for each user:

setfacl has the following useful parame-
ters: ‑m modifies or creates a new entry,

setfacl ‑m user:bob:r‑‑ U

calendar.cal

which is deleted by ‑x:

setfacl ‑x user:bob U

calendar.cal

This only removes the specified entry,
but it does not affect the group that Bob
belongs to. ‑‑set removes all previous
entries, setting only the new ones:

setfacl ‑‑set user:bob:r‑‑ U

calendar.cal

Finally, the ‑b option empties the com-
plete list. Additionally, setting the recur-
sive parameter ‑R tells setfacl to work its
way through the whole directory tree. At
the same time, you can even set multi-
ple comma-separated permissions:

setfacl ‑m user:bob:r‑‑, U

group:cteam:rw‑ calendar.cal

Instead of user and group names, you
can alternatively specify the UIDs and
GIDs; setfacl will also accept permis-
sions in a numeric format.

A couple of abbreviations apply in set‑
facl. Instead of user, you can simply say
u. In similar fashion, the abbreviations
g(roup), m(ask), o(ther) and d(efault)
exist. It is also possible to leave out mul-
tiple subsequent dashes, as long as the
command is unambiguous:

setfacl ‑m u:bob:r‑ U

calendar.cal

Setfacl Investigated

$ setfacl ‑m user:bob:rw‑
projectfolder

$ setfacl ‑d ‑‑set user:bob:rw‑
projectfolder

$ getfacl projectfolder

file: projectfolder

owner: alice

group: ateam

user::rwx

user:bob:rw‑

group::r‑x

mask::rwx

other::r‑x

default:user::rwx

default:user:bob:rw‑

default:mask::rwx

default:other::r‑x

Listing 1: Creating a
Default ACL

Access Control ListsCover story

34 ISSUE 91  JUNE 2008

$ getfacl calendar.cal
file: calendar.cal
owner: alice
group: ateam
user::rw‑
user:bob:rw‑ #effective:r‑‑
group::r‑‑
mask::r‑‑
other::r‑‑

Although Bob has write permissions, all
he effectively keeps is read permission
for the calendar.

Masks introduce another pitfall: setfacl
autonomously changes the mask when-
ever you modify the permissions for user
or group. If you misuse the mask, like
Alice did in the example here, you have
no alternative but to check its validity.

Standard
While she is working on a project, Alice
creates a number of project files that Bob
also needs to read. For each new docu-
ment, Alice could theoretically modify
the permissions manually. An easier op-
tion is to create directories with a default
ACL. The subdirectories and files below
the directory automatically inherit the
default permissions. Directories have
both an ACL of their own and the new
default ACL of the parent directory. You
can create a new default ACL by running
setfacl (see Listing 1).

getfacl always lists standard permis-
sions at the end. The format reflects the
legacy entries, but each time starts with
default. If you are only interested in the
default entries, you can specify getfacl
‑d; alternatively, getfacl ‑a prevents the
default entries from being displayed.

Because file access is handled through
the kernel itself, legacy programs have

no trouble working with extended per-
missions, which is not true of applica-
tions that manipulate file permissions,
such as Konqueror or Nautilus. Kon-
queror version 3.5 or later can handle
ACLs (as you can see in Figure 1), as
can Nautilus 2.16 or newer.

Standard Unix commands such as cp
or mv have been modified to handle
ACLs. Loss-free copying or moving as-
sumes that the target file system sup-
ports ACLs. If not, you only keep simple,
legacy file permissions.

Programs that have not been modified
to support ACLs simply change the stan-
dard permissions. One example of this
is performing the backup. The legacy tar
program does not keep ACLs. In this
case, you should choose an alternative,
such as Star tape archiver (star), which
is included with many distributions. The
command

star H=pax ‑acl ‑c ‑f U
backup.pax project_folder/

creates (‑c) the archive (‑f) backup.pax
and stores the contents of the project_
folder in it. The program uses the PAX
file format. The command

star ‑acl ‑xp ‑acl ‑f U
backup.pax

unpacks the package created by the pre-
vious command.

If you prefer to avoid
exotic formats, I recom-
mend a simple trick: You
can tell setfacl to parse its
parameters from a text
file. The format precisely
matches the output from
getfacl, so it would seem
to make sense to use get‑
facl to store all of the
ACLs in a text file and
then run setfacl later to
restore them. To start,
write the ACL output
from getfacl to a text file:

getfacl ‑R ‑‑skip‑U
base U
directory/ > U
/backup.acl

This tells getfacl to
change to directory and

write the ACLs for all the objects it finds
to a file called backup.acl. The ‑R param-
eter makes this process recursive. Then,
you can store the ACL file with the ac-
tual content of the directory using your
preferred packer. To restore the ACLs,
run setfacl:

setfacl ‑‑restore=backup.acl

Conclusions
Access Control Lists offer extremely flex-
ible permission management. At the
same time, ACLs take some of the work-
load from the administrator’s shoulders
by shifting responsibility for access per-
missions to the file owner. Thanks to de-
fault ACLs and masks, the administrator
still keeps control.

Data exchange remains a major prob-
lem. Because almost every operating
system uses a different ACL variant, the
various versions are typically incompati-
ble or only partially convertible, so per-
missions are often lost in the conversion
process. Administrators in heteroge-
neous environments therefore have to
keep on their toes. n

[1]	� POSIX ACL drafts: http://​wt.​xpilot.​org/​
	publications/​posix.​1e

[2] Konqueror: http://www.konqueror.org/

[3] Nautilus: http://www.gnome.org/
	 projects/ /

INFO

To create complex ACLs, you need to
run setfacl multiple times, which is
unwieldy and time consuming. Luckily,
administrators can store the entries in
a text file in the same format as getfacl
output and then run setfacl with the
‑‑set‑file="file.txt" parameter to restore
the permissions. The use of ‑ instead
of a file name tells the tool to read the
parameters from standard input. This
means that you can move an ACL from
one file to another:

getfacl file1 | setfacl U

‑‑set‑file=‑ file2

Collective

Figure 1: In KDE’s Konqueror, the Extended permissions

button in the File Properties dialog box takes you to this

dialog, where you can conveniently modify ACL entries.

Cover storyAccess Control Lists

35ISSUE 91JUNE 2008

