
37

I
n December 2006, Linus Torvalds

 announced that new versions of the

Linux kernel would include the vir-

tualization tool known as KVM (Kernel

Virtual Machine Monitor). KVM ap-

peared on the scene relatively recently,

and its sudden rise to prominence

speaks to the power of the kernel-based

virtualization model. Kernel-based virtu-

alization offers several potential advan-

tages, including better performance and

more uniform support for the complete

Linux environment. This article shows

how KVM works and helps you get

started with setting up your own KVM-

based virtual systems.

The KVM Way
In a common virtualization scenario, a

component known as the hypervisor

serves as an interface between the guest

operating system and the host. The hy-

pervisor sits on top of the host system,

handling tasks such as scheduling and

memory management for the guests.

KVM merges the hypervisor with the

kernel, thus reducing redundancy and

speeding up execution times. A KVM

driver communicates with the kernel

and acts as an interface for a userspace

virtual machine. Scheduling of processes

and memory management is handled

through the kernel itself. A small Linux

kernel module introduces the guest

mode, sets up page tables for the guest,

and emulates certain key instructions.

Current versions of KVM come with a

modified version of the Qemu emulator,

which manages I/ O and operates as a

virtual home for the guest system (Fig-

ure 1). The guest system runs within

Qemu, and Qemu runs as an ordinary

process in user space. The resulting en-

vironment is similar to the scenario de-

picted in Figure 2, in which several vir-

tual machine processes run alongside

other userspace tasks managed directly

by the kernel. Each guest consists of two

parts: the userspace part (Qemu) and the

guest part (the guest itself). The guest

physical memory is mapped in the task’s

virtual memory space, so guests can be

swapped as well. Virtual processors

within a virtual machine simply are

threads in the host process.

This model fits nicely into the Unix

mindset of doing one thing and doing it

right. The KVM module is all about en-

abling the guest mode and handling vir-

tualized accesses to registers. From a us-

er’s perspective, there’s almost no differ-

ence between running a Qemu virtual

machine with KVM disabled and run-

ning a virtual machine with KVM en-

abled, except, of course, the significant

speed difference.

KVM follows the development and

 release philosophy Linux is built on:

 release early and often. The latest stable

KVM brings the kernel into the virualization game. We’ll explain why the

Linux world is so interested in this promising virtualization alternative.

BY AMIT SHAH

Kernel-based virtualization with KVM

DEEP VIRTUE

S
p
e
c
tra

l-D
e
s
ig

n
, F

o
to

lia

COVER STORYKVM

37ISSUE 86JANUARY 2008

037-039_kvm.indd 37 15.11.2007 17:24:48 Uhr

release is part of Linux 2.6.x, with bug

fixes going in 2.6.x.y. The KVM source

code is maintained in a git tree. To get

the latest KVM release or the latest git

tree, head to the KVM wiki [1] for down-

load details.

Using KVM
Since KVM only exploits the recent hard-

ware advances, you should make sure

you have a processor that supports virtu-

alization extensions. To find out:

egrep '^flags.*(vmx|svm)' U

/proc/ cpuinfo

If there’s output, the necessary capabil-

ity to run KVM exists on the CPU.

If you have the hardware support,

you’re halfway there. You now need to

run a recent 2.6 Linux kernel. If you

 already run a recent Linux kernel with

KVM either compiled in the kernel or

compiled as modules, you can use it if

you don’t want to compile the modules

yourself. However, the KVM project rec-

ommends you use the latest version

from the website, as KVM continuously

gets new features and bug fixes (not to

mention new bugs, so you might get

hurt from them too once in a while).

Download the KVM source from the

KVM download page [2]. The tarball has

two parts. The kernel/ directory contains

the sources for the kernel modules. The

other files are the userspace portion, a

slightly modified version of Qemu. If you

download the KVM tarball and install it,

you shouldn’t have KVM compiled in the

kernel; otherwise, the built module will

fail to load.

Building the userspace utilities from

the tarball requires a few libraries. The

detailed list and

instructions are

available through

the KVM wiki [3].

You’ll need to

use the GCC 3

compiler; part of

the Qemu code

isn’t friends with

GCC 4, the default

compiler on recent

Linux distros.

Once you have

the kernel module

and the userspace

tools installed (by

building or installing from your distribu-

tion packages), the first thing you will

need to do is create a file that will hold

the guest OS. Creating such a file is easy:

$ qemu-img create -f qcow U

debian-etch.img 10G

This will create a 10GB file called

debian-etch.img in the qcow format.

A few other file formats are supported,

each with advantages and disadvan-

tages. See the Qemu documentation.

Once an image file is created, you’re

ready to install a guest OS within it.

First, insert the KVM kernel modules in

the kernel if they have been compiled

as modules.

$ sudo modprobe kvm

$ sudo modprobe kvm-intel

OR

sudo modprobe kvm-amd

$ qemu-system-x86_64 -boot d U

-cdrom /images/debian-etch.iso U

-hda debian-etch.img

This command starts a VM session. The

window displays QEMU/KVM in its title-

bar, signifying that KVM has been en-

abled. Once the install finishes, you can

run the guest with

$ qemu-system-x86_64 U

debian-etch.img

You can also pass the -m parameter to

set the amount of RAM the VM gets. The

default value is 128MB. Recent KVM re-

leases have support for swapping guest

memory, so the RAM allocated to the

guest isn’t pinned down on the host.

You may occasionally run into some

bugs running VMs with KVM. The out-

put in the host kernel logs will help you

search for similar problems reported

 earlier and any solutions that might be

available. Upgrading to the latest KVM

release might fix the problem.

In case you don’t find a solution, run-

ning the VM by passing the -no-kvm

command line to Qemu will start Qemu

without KVM support. If this doesn’t

solve the problem, it means the problem

lies in Qemu and not with KVM. Another

thing to try is to pass the -no-kvm-irqchip

parameter while starting a VM. You can

also ask the friendly KVM mailing list

[4].

Qemu Monitor
The Qemu monitor is entered with the

key combination Ctrl+Alt+2 when the

The various virtual machine solutions

fall into a number of categories:

• Native hypervisors: A native hyper-

visor is associated with an operating

system. A complete software-based

implementation will need a scheduler,

a memory management subsystem,

and an I/ O device model to export to

the guest OS. Examples are VMWare

ESX server, Xen, KVM, and IBM main-

frames. In IBM mainframes, the virutal

machine monitor is an integral part of

the architecture.

• Containers: In this type of virtualiza-

tion, the guest OS and the host OS

share the same kernel. Different

namespaces are allocated for different

guests. For example, the process

 identifiers, file descriptors, etc.,

are “virtualized” in the sense that

a PID obtained for a process in the

guest OS will only be valid within

that guest. The guest can have a

 different userland (e.g., a different

 distribution) from the host. Examples

are OpenVZ, FreeVPS, and Linux-

Vserver.

• Emulation: Each and every instruction

in the guest is emulated. It is possible

to run code compiled for different ar-

chitectures on a computer. For exam-

ple, you can run ARM code on a Pow-

erPC machine. Examples are Qemu

and Pearpc.

Types of Virtual Machine Monitors

Figure 1: KVM comes with a modified version of the Qemu emulator.

KVMCOVER STORY

38 ISSUE 86 JANUARY 2008

037-039_kvm.indd 38 15.11.2007 17:24:52 Uhr

Qemu window is selected. The monitor

gives access to some debugging com-

mands and some commands that can

help you inspect the state of the VM. For

example, info registers shows the con-

tents of the registers of the virtual CPU.

You can also attach USB devices to a VM

using commands in the Qemu monitor.

Migration of VMs
Migrating virtual machines is very im-

portant for load-balancing and reducing

downtime during upgrades. The migra-

tion process entails moving a guest from

one physical machine to another. The

advantage of the KVM approach is that

guests are not involved in the migration.

Also, you don’t need special components

to tunnel a migration through an SSH

session or compress the image being

 migrated. You can even pass the image

through a program before it’s transmit-

ted to the target machine. Unless specific

hardware or host-specific features are

enabled, the migration can occur be-

tween any two machines. Moreover,

stopped guests can be migrated as well

as live guests. The migration facility is

within Qemu, so no kernel-side changes

are needed for enabling it. The device

state-sync for achieving migration and

the VM state are seamlessly provided

and managed within user space.

On the target machine, you can run

Qemu with the same command-line op-

tions used for the virtual machine on the

source machine, with additional parame-

ters for migration-specific commands:

$ qemu-system-x86 -incoming U

<protocol:params>

For example:

$qemu-system-x86 -m 512 U

-hda /images/ a.img U

-incoming stdio

On the source machine, start migra-

tion with the migrate Qemu monitor

command

(qemu) migrate U

<migration-protocol:params>

such as (on the source Qemu monitor):

(qemu) migrate U

tcp://dst-ip:dst-port

The target Qemu migration command-

line parameter is:

-incoming tcp://0:port

If the source Qemu monitor command is

(qemu) migrate ssh://dst-ip

the target Qemu migration command-

line parameter is:

-incoming ssh://0

You can use similar command-line op-

tions to achieve gzip compression or gpg

encryption, or even to pass the data

through a script before sending it.

Advantages of the KVM
Approach
The KVM approach offers several advan-

tages. You can reuse all the existing soft-

ware and infrastructure, and you don’t

need to learn new commands. For exam-

ple, kill and top work as expected on the

guest task of the host system.

KVM was originally designed to sup-

port x86 hosts, and the focus was on full

virtualization (no modifications to guest

OS) with no modifications to the host

kernel. However, as KVM started gaining

developers and interesting use cases,

developers began working on porting

KVM to other architectures. Paravirtual-

ization support is also under develop-

ment. If a guest can communicate with

the host, activities such as network ac-

tivity or disk I/ O can speed up. Also,

modifications to the host operating sys-

tem (Linux) that will improve schedul-

ing and swapping have been proposed

and accepted.

KVM seamlessly works across all

 machine types – servers, desktops,

 laptops, and embedded boards – and

you can use the same management

tools and infrastructure Linux uses.

The KVM system integrates with the

Linux scheduler, IO stack, and all avail-

able filesystems. Other benefits include

live migration and support for NUMA

and 4096-processor machines. If you are

looking for an efficient virtualization al-

ternative that is well integrated with

Linux, take the time to explore KVM. �

[1] KVM wiki: http:// kvm. qumranet. com

[2] KVM download page: http:// kvm.

 qumranet. com/ kvmwiki/ Downloads

[3] KVM HOWTO: http:// kvm. qumranet.

 com/ kvmwiki/ HOWTO

[4] KVM mailing list:

kvm-devel@lists. sourceforge. net

INFO

Figure 2: A virtual machine process runs alongside other userspace tasks and is managed

directly by the kernel.

COVER STORYKVM

39ISSUE 86JANUARY 2008

037-039_kvm.indd 39 15.11.2007 17:24:53 Uhr

