
Virtualization and Emulation in Linux

VIRTUES OF
THE VIRTUAL

Virtualization Tools 26

Virtualization on System p 32

Bochs Emulator . 36

IEs4Linux .. 42

COVER STORY

In the old days, an operating system
was somehow monogamously tied to
the hardware. Aside from a few ex-

perts and visionaries, no one even con-
sidered the possibility of many systems
sharing the same iron simultaneously.
And no one lost any sleep worrying
about the option of one operating system
running on a different operating system.
In today’s virtual world, however, your
applications may not ever know where
the hardware stops and where the soft-
ware begins.

Virtualization provides several bene-
fits for the Linux user: stability, manage-
ability, security, and even nostalgia. This
month, we take close look at some Linux
virtualization options.

We start by comparing virtualization
alternatives for the Linux desktop. Then
we’ll examine virtualization on IBM’s
System p servers. You'll also learn about
the famous Bochs emulator, and we'll
finish with a look at a Wine-based tool
called IEs4Linux that lets you run Inter-
net Explorer in Linux.

Competition and Emulation
More than 40 years ago, long before
Linux was invented, IBM had a problem.

You’ll find a virtualization solution for every Linux environment – from the desktop to the enterprise server.

In this month's cover story, we investigate some promising virtualization tools for Linux users.

BY TIM SCHÜRMANN

COVER STORYVirtualization Intro

21ISSUE 83 OCTOBER 2007W W W. L I N U X- M A G A Z I N E . C O M

The new System/ 360 [1] worked in a
way that was completely different from
the antiquated 7070. To help potential
customers migrate more easily, IBM
wanted to let legacy applications run on
the new system.

After various tests, IBM finally went
for an idea submitted by engineer Larry
Moss, who suggested a combination of
software and a special hardware exten-
sion. Once started, the combined solu-
tion would monitor every single step of
the legacy application and convert its
commands into commands the new Sys-
tem/ 360 computer could understand.
This way, the new computer would be-

have exactly like its pre-
decessor.

This simple sleight of
hand gave purchasers of
the new model the ability
to continue using their
legacy 7070 applications.
Because the software em-
ulated the behavior of an-
other computer, Larry
Moss dubbed his inven-
tion an emulator.

Modern emulators copy
the behavior of a com-
plete computer at soft-
ware level, and they do it
so perfectly that you can
launch a guest operating

system along with applications designed
for it in the emulator.

This gives users a virtual PC, or more
generically, a virtual machine (see Fig-
ure 1). QEMU [2] and Bochs [3] are just
two examples of popular, free emulators
that simply reroute the screen output
into an application window of their own.
The operating system running on the vir-
tual computer thinks it is using a stan-
dard display.

Emulators offer a number of benefits.
First, it is quite simple to clone a system
running on the emulator. Because the
emulator copies a complete PC at soft-
ware level, it is easy to freeze the current

state and create a snapshot archive or let
the virtual PC run on a completely differ-
ent computer.

Because the simulated hardware does
not change, you can even migrate across
hardware boundaries. This gives users
the ability to try out new programs with-
out any risk. You simply save the current
emulator state, install the application
you want to test, and then restore the
original state if you are unhappy with
the test results.

In addition to these software-only so-
lutions, some hardware emulators also
exist. And just as in the case of the his-
toric IBM System/ 360, there are also
some hybrid solutions. A recent example
of a software/hardware hybrid solution
is Sony’s PlayStation 3. The first version
of PlayStation 3 includes a hardware
component that allows PlayStation 2
games to run on the console. The cur-
rent European version of the PlayStation
3 system uses a software-only emulator
for this.

This example shows another main use
for emulators – the ability to instill new

Emulator: A word for a program that
copies the behavior of another applica-
tion, derived from the Latin word “ae-
mulare” (to compete, emulate).

GLOSSARY

Figure 1: An emulator creates a PC within a PC. In this exam-

ple, Windows and Word are running within the emulation.

Neither application can access the underlying Linux system.

Virtualization solutions crop up at the
most unexpected places. For example,
the Open Firmware alternative BIOS is
also a virtual machine [16]. The hard-
ware installed in the computer can store
its own extensions to the basic configu-
ration at this location no matter what
kind of hardware platform it runs on.

Some CPUs or computers support a
compatibility mode. All of today’s x86
CPUs can run programs for ancient rela-
tives. CPU manufacturer Transmeta
takes this a step further – to retain com-
patibility with Intel and AMD CPUs,
Transmeta simply translates all instruc-
tions into Tansmeta’s own format before
executing.

The Commodore 128 from the 1980s is
another example of virtualization. The
home computer had a native operating
mode, but it could also run applications
designed for its smaller brother, the
C=64, and for CP/ M, the state-of-art PC
operating system at the time.

Unknown Virtual Machines

Figure 2: The UAE emulator revives the legacy Commodore Amiga. You can see the Amiga

GUI running on a window in Linux here.

Virtualization IntroCOVER STORY

22 ISSUE 83 OCRTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

life into defunct hardware and software.
Just imagine running the good old ac-
counts program from the heady days of
DOS or the legendary WordPerfect pro-
cessor from the same era.

Emulators of this kind tend to focus on
video game consoles and home comput-
ers from the last century. Fans have cre-
ated emulators that copy these legacy
treasures with bit precision. This gives
classic machines such as the Commo-
dore Amiga [4], Atari ST [5], or the
C=64 [6] a new lease of life on Linux
PCs (see Figure 2).

Because they are what they are, emu-
lators can cause issues. An emulator
needs to copy a computer’s hardware
components as precisely as possible, so
you’ll need to make sure the system has
sufficient computational power.

Older systems built for less-advanced
hardware are often less taxing. As a rule
of thumb, the older an operating system
is, the faster the system will run in an
emulator.

In contrast to this, running a recent
version of Ubuntu on QEMU gives you

performance similar to running Ubuntu
on a machine that is well past its prime.

The closer you look, the less sense it
makes to emulate a complete Intel CPU
if you already have one in your com-

puter. Instead, you could use the CPU di-
rectly and would only need to simulate
the rest of the required target system.

You could apply the same principle to
any other component by just emulating

Figure 3: ScummVM brings old adventures back to life by giving them what they need – a

script interpreter.

Advertisement

COVER STORYVirtualization Intro

the hardware you need at the software
level. In this case, we no longer refer to
the approach as emulation. Instead, we
call it virtualization.

If you simply remove the CPU simula-
tion from an emulator, this is referred to
as hardware or system virtualization.
You can install the KQEMU extension for
QEMU to use this mode. The commercial
VMware [7] product also does without
CPU emulation. The downside of this
approach is the restriction to a specific
CPU type. For example, neither of these
solutions will work on a PowerPC out of
the box.

Para-Virtualization
An emulator runs as a normal program
on Linux or Windows, but theoretically
you could eliminate the host operating
system. To allow this to happen, you
need special software that runs directly
on the hardware.

Programs of this kind are known as
hypervisors or virtual machine monitors.
The hypervisor manages the guest oper-
ating systems installed on the computer
independently of the operating system,
and thus ensures trouble-free parallel
operations.

In this kind of environment, guest sys-
tems do not work directly with the hard-
ware, but pass requests to the hypervi-
sor. For example, if one of the guest

Linux systems running in parallel on a
system needs disk access, the guest
Linux system issues an access request
to the hypervisor. The hypervisor then
handles physical access and returns
the results to the requesting system.

To allow all the guests to talk to the
hypervisor, it offers them a standardized
interface to the physical hardware,
which other programs and operating sys-
tems can use. This technique, which is
known as para-virtualization, has the
advantage of amazingly fast execution
speeds compared with other solutions.
The vendors of para-virtualization solu-
tions refer to performance hits of just
0.5 to 3 percent compared with physical
hardware. The free Xen [8] product and
the commercial ESX Server by VMware
[7] are the most popular examples of
this technology.

The requirement for the guest system
to support the hypervisor is an obstacle
to para-virtualization because it implies
modifying the operating system. And
with a battened-down system like Micro-
soft Windows, this task of modifying the
operating system is obviously difficult.
Another complication is that the hyper-
visor itself has to handle a number of
operating system tasks. For example, the
hypervisor needs to know what kind of
graphics adapter the system has and
how to address it.

To avoid drowning in a sea of driver
modifications, hypervisor developers
typically opt for one of the following ap-
proaches:
• The Xen project’s hypervisor simply

chooses one of the parallel operating
systems as its favorite guest. Once this
relationship is established, the hyper-
visor uses the guest system’s drivers.
In other words, if another operating
system running on the machine ac-
cesses a USB interface, the hypervisor
passes this access request to the privi-
leged guest operating system.

• The second approach converts an ex-
isting Linux kernel to produce a hyper-
visor – Linux has more or less every-
thing the hypervisor needs. The KVM
project [9], for example, uses this vir-
tualization technique. The project pro-
vides a kernel module that converts
the current Linux kernel into a hyper-
visor. The hypervisor then uses a
modified QEMU emulator to launch
other operating systems. This virtual-

ization method is known as kernel-
based virtualization.

Virtualizing Operating
Systems
If you simply need to clone an instance
of Linux that is running on your ma-
chine, operating system virtualization is
probably your best option. In contrast to
the other virtualization solutions, oper-
ating system virtualization means
that the computer only has to run one
operating system, which is cloned based
on templates. The templates specify the
configuration of the new clone; for ex-
ample, administrators can restrict access
to disk space.

During cloning, the virtualization so-
lution typically just copies the system
environment. Under the hood, there is

To run a commercial operating system
on a virtual machine, you do need a
valid license. For example, to run a
Microsoft system in a virtual environ-
ment, you need to purchase your own
copy of Windows. Check out your soft-
ware manufacturer’s licensing details
to be on the safe side.

Another issue – and one that particularly
affects older computers or operating
systems – is the patented firmware,
which may be protected by copyright or
patent law. For example, you need a
matching BIOS for a full PC emulation.
Older Apple computers actually store
part of the operating system on chips in
an approach that was very popular in
the days of home computers. In the case
of the PC, fortunately, there are various
free BIOS alternatives [17] and most vir-
tualization products include them. For
all other computers, there is no alterna-
tive but to grab the firmware using a
special program.

Licenses

[1] IBM System/ 360: http:// en. wikipedia.
org/ wiki/ System/ 360

[2] Qemu and KQemu:
http://fabrice.bellard.free.fr/qemu/

[3] Bochs PC Emulator:
http:// bochs. sourceforge. net

[4] UAE Amiga Emulator:
http:// uae. coresystems. de

[5] StonX Atari ST Emulator:
http:// stonx. sourceforge. net

[6] VICE Commodore 64 Emulator:
http:// www. viceteam. org

[7] VMware: http:// www. vmware. com

[8] Xen: http://www.cl.cam.ac.uk/re-
search/srg/netos/xen/

[9] KVM:
http://kvm.qumranet.com/kvmwiki

[10] VServer: http://linux-vserver.org/Wel-
come_to_Linux-VServer.org

[11] OpenVZ: http:// openvz. org

[12] Java programming language:
http:// www. java. com

[13] ScummVM:
http:// www. scummvm. org

[14] Intel Virtualization Technology:
http://www.intel.com/technology/
platform-technology/virtualization/
index.htm

[15] AMD Virtualization:
http://www.amd.com/us-en/Proces-
sors/ProductInformation/0,,30_118_
8796_14287,00.html

[16] Open Firmware:
http:// www. openbios. info

[17] Free PC BIOS: http:// www. linuxbios.
org/ Welcome_to_LinuxBIOS

INFO

Virtualization IntroCOVER STORY

24 ISSUE 83 OCRTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

still a single Linux kernel,
which all the active programs
use no matter which clone
they happen to be running
on. Operating system virtual-
ization simply locks the
application away in its own
system environment, which
gives you a fast and secure
system. Programs for other
operating systems are not
supported, however.

Linux VServer [10] and
OpenVZ [11], an open source
derivative of the commercial
Virtuozzo, are examples of
free operating system virtual-
izers. Both variants use a
modified Linux kernel.

Application
Virtualization
In some cases, it is unneces-
sary to clone a whole system
environment to keep pro-
grams separate. Application
virtualization gives users a
trouble-free package for any
application containing the re-
sources the application needs
to run.

These resources could in-
clude configuration files, li-
braries, or auxiliary pro-
grams. The package bundle
this creates is called a (vir-
tual) runtime environment.

Programs packaged in this
way don’t need to be in-
stalled. Applications devel-
oped in the Java program-
ming language are examples
of this category. To execute a
Java program, you need the
Java Runtime Environment
[12]. ScummVM [13], which
is responsible for reincarnat-
ing a couple of older adven-
ture games, also relies on this
principle (Figure 3).

Partial
Virtualization
Partial virtualization is a spe-
cial case in the virtualization
world. This solution involves
pretending that a hardware
component exists multiple
times. If this is done for RAM

memory, the process is
known as address space vir-
tualization. In this case, pro-
grams running on the system
think they have exclusive
access to memory. Other
processes are hidden to the
application.

Server
Virtualization
Internet service providers are
particularly interested in vir-
tualization solutions. For one
thing, these solutions support
shared hosting, that is, the
ability for multiple customers
to share a physical Internet
server. These customers as-
sume – and they are not en-
tirely wrong – that they are
working on their own serv-
ers. Website operators can
use this technology to en-
hance their response to Inter-
net requests by distributing
the load over their servers
while reducing operating
costs by sharing hardware.

The virtualization solutions
used for server virtualization
rely on the models I looked at
earlier, but they also depend
on server-level features such
as load distribution or special
administrative interfaces.

Examples of products for
server virtualization include
VServer or OpenVZ. Both sys-
tems use a modified Linux
kernel, which launches and
manages the individual vir-
tual environments.

Conclusions
Apart from the huge volume
of buzzwords bandied about
by technical wizards and
marketing consultants, virtu-
alization offers interesting
options for the Linux user.

You can run different oper-
ating systems at the same
time, lock away critical appli-
cations, and try out new con-
figurations without any risk
to existing systems. We hope
you enjoy this month’s Virtu-
alization cover story. ■

Advertisement

