
The only way to make your system
completely safe from attack is
never to connect to the Internet.

Whenever you open the door to go out,
you open the door for a potential hacker
to get it.

Some users have the mistaken belief
that intruders only attack high-profile
sites and would not be interested in a
personal home workstation. The truth is
that every single computer on the Inter-
net is in danger of attack – even
computers with dial-up connections. In
many cases, these attacks are blind,
brute force attacks, where the attacker
tries a long list of known security holes.

To foil the attackers, you could simply
disable all inbound ports, which essen-
tially makes your computer invisible to
the world. However, when you need to
(or even just want to) provided services
from your computer, you need a different
form of protection.

Even the smallest businesses need the
protection a firewall provides. Most users
cannot afford the thousands of dollars
for a commercial firewall product. Fortu-
nately, there are open source solutions
that offer the necessary protection. One
such solution is Shorewall.

Behind the Scenes
Shorewall is the common name of the
Shoreline Firewall. From a user’s per-
spective, Shorewall is a set of
easy-to-configure files that are used to
configure Netfilter [1]. Netfilter is a fea-
ture of the Linux 2.4.x and 2.6.x kernels
that allows kernel modules to access the
network protocol stack at various places.
The kernel module then can do almost
anything with the network packet,

including simply dropping it or even
manipulating it.

Netfilter also supports the older
ipchains, the packet filter facility in 2.2
kernels. Netfilter needs to be explicitly
set to “ipchains compatibility mode” for
it to work with ipchains.

You can download the latest version of
Shorewall from the Shorewall Web site
[2] as either source or as an RPM pack-
age. Note that the RPM version has not
been tested with every distribution,
although it has been tested with major
distributions like SuSE, Redhat, and
Mandrake. If you are uncertain, check
the Shorewall site.

In order for Shorewall to work, you
also need the iptables and iproute/
iproute2 packages. These packages are
provided by default in most distribu-
tions, so it shouldn’t be a problem. The
reason you need iptables is that Shore-
wall is not really the firewall itself. That
is, Shorewall is not responsible for
checking, filtering, and managing pack-
ets. Shorewall simply takes its
configuration files and uses the iptables
command to load them into the kernel.

Because iptables assumes the task of
manipulating tables within the kernel,
Shorewall is no longer needed once you
run it. You can actually see what is being
done by taking a look at the Shorewall
program itself. No, you don’t need to dig
through a lot of source. The shorewall
program (typically, /sbin/shorewall) is a
shell script.

So that iptables will know what to do,
you need to tell the kernel what the rules
are. So-called rulesets are defined within
iptables and consist of one connection
and a number of “classifiers.” This deter-

mines if a particular connection is
allowed, if and how the packet should be
manipulated or redirected, and so on.

This concept is basically the same in
all firewall software and can be
employed on networks with dozens or
even hundreds of computers, although it
is likely that with that many computers
talking to each other, you would proba-
bly want to break down your network
into multiple segments. Each segment
also could be managed by its own Shore-
wall firewall.

One thing to note is that you do not
necessarily need to have a dedicated
computer just for your firewall. Although
this is common practice (and generally a
good idea), home users probably don’t
have the space to set up extra computers
for each specific function. If your work-
station is connecting directly to the
Internet, you could add a firewall
directly to your workstation.

My network consists of one computer
with a DSL card that connects to the
Internet, one Windows XP machine, and
another Linux computer. Each has a dif-
ferent purpose, and I allow different
connections to and from these machines.

As simple as my network configura-
tion is, I only have to change a couple of

33www.linux-magazine.com January 2005

COVER STORYShorewall

When users think about their workstations at home, they often forget about

security. But danger is out there, waiting to pounce on the unsuspecting.

Shorewall helps everyday Linux users keep the intruders away.

BY JAMES MOHR

Configuring Netfilter/iptables with Shorewall

Setting the Table



The zones are defined in the
/etc/shorewall/zones file. Each entry has
three values: zone name (used to refer-
ence this zone in the other files), display
name (which appears when shorewall is
loading the rules), and a comment. List-
ing 1 shows you a basic zones file.

Defining the Paths of
Communication
Although we have defined the zones, the
firewall still does not know how it com-
municates with each zone. That is, there
is no association between the zone name
and the actual network. This is done
through the /etc/shorewall/interfaces file,
which consists of four columns: zone,
interface, broadcast, and options.

On my system, the interfaces file looks
like Listing 2.

The zone is simply the name of the
zone from your zones file. The interface
is the name of the network interface. For
example, for my DSL connection, which
uses the Point-to-Point Protocol (PPP),
the interface name is ppp0. The interface
name for my ethernet card is eth0. To
find out which interfaces you have, use
the command /sbin/ifconfig. The broad-
cast column is the broadcast address for
the network attached to that interface.
As you might guess, the options column
specifies any options you want to use.

On my system, I have two entries that
look like this:

net ppp0 routefilter,norfc1918
loc eth0 detect -

As you can see, the Internet zone is con-
nected to the ppp0 interface and the
local zone is connected to the eth0 inter-

face. Since I have three zones, you may
be asking yourself why there is no entry
for the firewall zone. Well, quite simply,
the firewall zone connects to the other
zones through one of the interfaces
already specified. So, it might be better
to think of the interface file as defining
which interface the firewall uses to talk
to the other zones.

In the case of the ppp0 interface, the
broadcast has a hyphen (-). Since a PPP
connection doesn’t have a broadcast, I
could have left this blank. However,
since I wanted to specify some additional
options, I needed some kind of place
holder. Hence, the hyphen. If I had no
options, I could have left this blank.
However, I like to always include
hyphens as a reminder that something is
“missing.”

The routefilter option I specified tells
the kernel to reject any package on the
given interface that has a source address
that would have been routed outbound
on a different interface. In this case, if
the ppp0 interface had a packet with an
inbound source address that was nor-
mally routed outbound from the eth0
interface, it would be dropped. This is
referred to as anti-spoofing.

The second option, norfc1918, tells the
kernel not to route addresses specified as
“private” in RFC 1918. RFC 1918 lists a
number of address ranges that can be
used by anyone and shouldn’t be routed.
This option ensures that they aren’t.
Details of RFC 1918 can be found at [3].

Here I have a dilemma. I want my
other computers to be able to access the
Internet, but they have RFC 1918
addresses. So how can they reach the
Internet? Well, this is something we will
get to shortly.

You can configure Shorewall to behave
in specific ways based on the zones by
setting the “policy” for that zone. Setting
the default policy for a zone is done (as
you might guess) through the policy file.
The fields in this file are: client (the
source zone), server (the destination
zone), policy (what should be done by

the configuration files in order to use
Shorewall. Because this is a common (as
well as simple) configuration, it is a good
place to start.

Basic Configuration
The primary configuration file is
/etc/shorewall/shorewall.conf. shore-
wall.conf lets you configure everything
from startup behavior to shutdown
behavior. Although you can set a lot of
different values in this file, I have not yet
found a reason to change any of the set-
tings on my system.

You may already be familiar with the
term “segment” to refer to specific por-
tions of a network. Shorewall uses the
term “zone.” In my configuration, I have
four zones: fw (the firewall itself, my
workstation), net (the Internet) and loc
(the local network).

Zone names must be short (5 charac-
ters or fewer) and can contain letters or
numbers. Note that you cannot use the
special zone all. Also, you cannot refer
to a zone other than your firewall by the
name defined by the FW variable in
shorewall.conf. This name defaults to fw.

Even if you are not providing any ser-
vices to computers outside of your local
network, you still need the Internet
zone. Remember that iptable rules are
defined by a specific connection, that is,
by two end points. One end point is per-
haps your workstation, and the other is
the Internet. Thus, you need to define
the Internet as a specific zone.

Note that these names are just a con-
vention. Although they are the default
values that Shorewall itself uses for these
zones, you could call them anything you
want, provided the naming is consistent
through all of the configuration files.

By default, the permissions on the
/etc/shorewall directory are 700, which
means only the owner (root) has access.
Even read permission could be danger-
ous, as someone might be able to see a
hole in the security and exploit it.

34 January 2005 www.linux-magazine.com

ShorewallCOVER STORY

01 #ZONE DISPLAY COMMENT
02 net Net the Internet zone
03 loc Local the local network
04 fw FW the firewall
05 #LAST LINE -- ADD YOUR ENTRIES BEFORE THIS ONE -- DO NOT REMOVE

Listing 1: Sample zones file

01 #ZONE INTERFACE BROADCAST OPTIONS
02 net ppp0 - routefilter,norfc1918
03 loc eth0 detect -
04 #LAST LINE -- ADD YOUR ENTRIES BEFORE THIS ONE -- DO NOT REMOVE

Listing 2: Sample interfaces file



default), and log level (how much infor-
mation to record).

Listing 3 shows a sample policy file.
Take a look at the last two lines. The first
one says that any traffic that has not yet
matched and is coming from the Internet
is to simply be dropped (ignored).

You have four choices for the connec-
tion policy:

ACCEPT – Accept the connection
request. DROP – Ignore the connection
request. REJECT – Return an appropriate
error to the requesting computer. CON-
TINUE – Allows you to have hosts in
multiple zones and apply policies from
both zones.

The log level determines how much
information is sent to the system logger
(syslog). Keep in mind that all of this is
done by iptables, which exists in the ker-
nel. That means all of the logging
information is sent from the kernel log-
ging facility. All you are doing here is
specifying the priority of messages that
are logged. (For more details on system
logging, check out the syslogd man-
page.)

The last two lines of my policy file
look like this:

net all DROP info
all all REJECT info

The first line says any traffic that has not
yet matched and is coming from the
Internet is to simply be dropped
(ignored). However, the remaining traffic
is rejected. This may seem a little odd at
first, but it makes sense when you con-
sider the difference between reject and
drop. When a packet comes from the
Internet intended for a specific address
or port that is not allowed, I want to

ignore it. I do not want the sender to
know what happened. This might give
the user a clue as to how to circumvent
the security. On the on the hand, packets
coming from anywhere else (my work-
station or the local machine) are rejected
so the client application has some idea of
what happened.

Note that we are configuring the
default behavior in the zone file. What
this means is that if you do not define
any other specific connections, the
behavior in the policy file will apply.

In my policy file, I have only this one
entry for the net zone. This theoretically
would mean that all packets coming

COVER STORYShorewall

01 #SOURCE DEST POLICY LOG LEVEL
02 fw net ACCEPT info
03 fw loc ACCEPT info
04 loc net REJECT info
05 loc fw ACCEPT info
06 net all DROP info
07 all all REJECT info
08 #LAST LINE -- ADD YOUR ENTRIES BEFORE THIS ONE -- DO NOT REMOVE

Listing 3: Sample policy file



Therefore, the meaning of the whole line
is reversed. That is, all requests except
those destined for addresses in the
10.2.38.0 network are redirected to
Squid. This makes sense because
10.2.38.0 is my local network, and any
Web servers on the local network can or
should be accessible without having to
go through a proxy.

The LOG action will first log the
packet and then continue on with the
next applicable rule. The QUEUE action
is used to forward packets to user-space
applications, which manipulate them
and return them to the IP stack.

A rule of thumb when configuring
your rules file is to turn everything off>
at first, and then turn things back on as
you need them. Many people do things
in reverse, by starting with a network
that is wide open and turning off
unneeded services. If you forget some-
thing in the first case, it simply means
you don’t have the access you expect
(which is a little inconvenient). In the
second case, forgetting something could
mean you open yourself up to an attack.

Digging Deeper
The /etc/shorewall/hosts file allows you
to define specific hosts. Usually, there is
no reason to add anything into the hosts
file for smaller networks. The smaller the
network, the more likely that all
machines in a zone are configured the
same way (or more accurately phrased,
that all of the machines on a given inter-
face have the same configuration).

This may not be the case, and you
need different access rules for different
machines on the same network. A cou-
ple of months ago, my son began to play
an Internet roll playing game. This
meant he needed more than just HTTP
access to the Internet, so I could no
longer simply use the redirection to the
Squid proxy, as described above.

To provide this access, I defined a spe-
cific set of computers as a new zone. So,
I first created a new entry in my zone file
for this zone, which I called “game.”
Next, I created an entry in the hosts file
that contained just my son’s computer:

game eth0:10.2.38.13

But that’s not all. Remember that my
local network is 10.2.38.0/24. This is one

of the “private” networks listed in RFC
1918. Even if I wanted to route this
through my DSL card, you can bet
money that my ISP is not going to route
it. So what could I do?

The solution is something called “IP
masquerading.” As its name implies, one
IP address is “masquerading” for the
others. In my case, the IP address on 
the DSL card (which has a valid Inter-
net address) is masquerading for the 
IP addresses in the local network. So, 
I needed to create an entry in the 
/etc/shorewall/masq file that looked like
this:

ppp0 10.2.38.0/24

This entry says that all traffic outbound
on the ppp0 interface coming from the
class C network 10.2.38.0 is to be mas-
querade.

At this point, the basic configuration
for the masquerading was done. How-
ever, next came the hardest part. It was
not very easy to get information about
running this game across a firewall. In
fact, I found references that actually said
if you want to play, you need to disable
all firewalls while you play!

Well, I eventually got it to work. To do
so, I needed to set the logging level in
the policy file to debug and watch the log
file for all attempts to connect from my
son’s machine to any machine, then
check DNS to see if that was a machine
from the game developers. I then added
the specific port to my rules file.

If I wanted too, I could have added
rules for the WWW service (port 80) as
well. However, since this was the only
thing my son needed other than Web
access, I still continue to use the REDI-
RECT entry for web access.

Troubleshooting and Logging
It is possible (if not likely), that you may
have problems the first time you config-
ure Shorewall. So, being able to track
down the causes of a problem will be
useful.

One useful debugging technique is set-
ting the logging level in the policy file.
Setting it to debug gives you a lot more
information. Going into detail about the
log entries is beyond the scope of this
article, but they are fairly easy to figure
out, even without knowing all of the

from the Internet are dropped. However,
I have a web server on my machine with
a lot of reference information I want to
be able to access from work. Since this
connection goes across the Internet, the
entry in the policy file would mean that I
could not access my web server.

The answer to this is the rules file. 
The rules file is the heart of the Shore-
wall configuration. Here you define a
specific connection both in terms of
zones, network services (ports), network
segments, individual machines, and
basically any combination you can think
of. When an incoming request arrives,
the system first checks the request
against connections defined in the rules
file. If none are found, it uses the default
values in the policy file. The columns in
the rules file are: action to be taken, the
source of the request, the destination,
the protocol used, the destination port,
the source port, and the original destina-
tion.

In addition to the actions in the zone
file, you have a couple of additional
actions in the rules file. DNAT allows you
to do Destination Network Address
Translation. With this, requests can be
forwarded to different computers and
even different ports on those computers.
The REDIRECT action will redirect
requests to specific ports on the same
machine. This is commonly used to redi-
rect HTTP requests to a local proxy (i.e.,
squid).

For smaller networks that do not want
to provide full Internet access, I have
found that the REDIRECT action is
extremely useful (perhaps only allowing
HTTP access). I have any entry that
looks like this:

REDIRECT loc 3128 tcp www - U

!10.2.38.0/24

In a nutshell, this entry says that all
incoming connections using the TCP pro-
tocol and requesting www services (i.e.,
HTTP) are redirected to port 3128. This
is the port on which the Squid proxy
server is listening.

Looking at the original destination, we
specify an entire class C network using
CIDR notation: 10.2.38.0/24. Plus, this
entry is preceded by an exclamation
mark. As in other contexts, the exclama-
tion mark is used to negate the entry.

36 January 2005 www.linux-magazine.com

ShorewallCOVER STORY



individual entries. For example, take a
look at this entry:

Nov 1 11:19:32 saturn kernel: U

Shorewall:net2all:DROP:IN=ppp0 U

OUT= MAC=
SRC=1.2.3.4 DST=10.2.38.11 U

LEN=48 TOS=0x00 PREC=0x00 U

TTL=116 ID=47048 DF
PROTO=TCP SPT=1 292 DPT=1080 U

WINDOW=64240 RES=0x00 SYN URGP=0

This is a standard entry from /var/
log/messages, so at the beginning you
have the date, the computer name, and
the syslog facility (kernel, in this case).
Following that is the actual message. You
can easily tell that this packet was
inbound on the ppp0 (my DSL card) and
the packet was dropped. You can also
see that it was using the connection
net2all, meaning from the Internet to all
other zones.

If you look back to the discussion on
the policy file, you see that we had an
entry that said the default behavior was
to drop all packets from the Internet to

all other interfaces. There was a packet
trying to reach the destination port
(DPT) 1080, the socks port. I don’t have
anything running on that port, and I cer-
tainly did not communicate to anyone
that they should try to use that port.
Since there is not a “standard” service
associated with this port, there is no rea-
son for someone to try to access it from
the Internet, so it seems pretty obvious
to me that someone was trying to see if
they could exploit a Windows bug.

If the remote computer (or even
another computer on the same network)
continued to try to access various ports
on my machine, I might want to “black-
list” them. I would do this by adding the
host or network address (in CIDR for-
mat) into the /etc/shorewall/ blacklist
file. This means that, regardless of any
other entries that might allow them
access, the computer or network is
specifically denied access.

By default, Shorewall uses the system
logging facility, which typically defaults
to sending message to /var/log/
messages. Even when I configure syslogd

to send messages to another file, I find it
bothersome to have my firewall logs get
mixed up with other kernel messages.

To solve this, you can use the ULOG
support in the kernel. Note that ULOG
support must be available in your kernel,
but this is the default in most newer dis-
tributions. However, the ulogd package is
not always available, so you may have to
download it yourself from [4].

Once ulogd is configured for your sys-
tem, you no longer use the syslogd
logging levels in the policy. Instead, you
use the ULOG. ■

37www.linux-magazine.com January 2005

COVER STORYShorewall

[1] Netfilter Website:
http://www.netfilter.org

[2] Shorewall Website:
http://www.shorewall.net

[3] Address Allocation for Private Internets
RFC 1918:
http://rfc.net/rfc1918.html

[4] Ulog:
http://www.ulog.ch/english/index.html

[5] Squid Proxy:
http://www.squid-cache.org/

INFO


