
Client object that implements an instant
messaging client that will act as the
agent.

Before agent.pl enters the main event
loop in line 83, we need to define a few

callbacks for several events in line 35ff.
The onauth handler in line 68 will be
called after the client has logged on to
the server using the credentials specified
in line 23. The handler
then calls RosterGet()
to fetch the buddy list
and stores it in a
global hash called
%ROSTER. The Pres-
ence() method, which
then follows, sends
a presence message
to all the clients on
the roster to tell them
that agent.pl is on-
line. From this point
onward, a gaim client
with mikes-agent-

sender as the
logged on user will display mikes-
agent-receiver as an active client on its
buddy list (Figure 2).

The message callback in line 37
gets invoked when someone sends a
message to agent.pl. Any client on the
Jabber network could do this, and
this is why line 45 checks if the sender
is a friend. In our case, mikes-agent-
sender is the only one allowed to send a
message, as it is the only entry on the
client’s buddy list (see the “Installation”
section). The function simply discards
all other queries, logs an informational
message and returns to the main loop in
line 50.

The getBody() method in line 57 of
the script extracts the control command
sent with the message text and passes it
to the run_cmd function defined in 93.

Execute() in line 83 connects to
the Jabber server at jabber.org and logs
in as mikes-agent-receiver. The main
event loop recovers if the connection is

temporarily lost, and
should run indefinitely.
If it does quit because
too many errors have oc-
curred, line 90 cleans up
and quits the program.

To make sure the
agent gets started when
the Linux system is start-
ing up, add the fol-
lowing:

x:3:respawn:su U

username -cU
/usr/bin/agent

Of course, one way to perform
tasks on a local network from
the Internet is to poke a hole

through your firewall and connect to
a local web server. Services like dyn-
dns.org allow quasi-static access to the
dynamic IP addresses that Internet
providers assign.

An agent or “bot” (probably short for
“Robot”) makes life simpler: a messag-
ing client on the inside of the firewall
can attach to the public Jabber messag-
ing network and accept commands in
the form of text messages. The client I
will describe in this article will only
accept commands from clients on its
buddy list, and it only supports four
actions: load checking for the bot com-
puter, querying the public router address
(command: ip), and switching the lights
on and off at my apartment in San
Francisco (lamp on|off).

The agent.pl script (Listing 1) requires
Log::Log4perl and logs transactions in
a file called /tmp/agent.log. Line 33 of
the script creates a new Net::Jabber::

To get past a firewall and into a LAN, you need either a secret back-

door or a cooperative agent on the inside. A Jabber client on the LAN

contacts a public Jabber server and wait for instructions trickling in

as instant messages from its Internet buddies.

BY MICHAEL SCHILLI

68 January 2005 www.linux-magazine.com

Remote control with a Jabber Bot

Inside

Perl: Building a Jabber BotPROGRAMMING

Figure 1: The “bot” behind the firewall runs com-
mands sent to it by an Internet-based jabber
client.

Figure 2: The “bot” now appears in the
sender’s buddy list.

to /etc/inittab. This code also makes
sure that the agent gets restarted im-
mediately if it stops running for any
reason.

Up Through the Down Pipe
The agent discovers my router’s external
IP address by sending a Web request to
the public URL http://perlmeister.com/
cgi/whatsmyip. The target is a simple
script that returns the address of the
requesting client:

print U

"Content-Type: text/html\n\n";
print $ENV{REMOTE_ADDR}, "\n";

agent.pl uses LWP::
Simple to do this; the
get function in line
99 gets the website
content, if the text
message the Jabber
client receives is ip.

Determining cur-
rent system load
follows a similar pat-
tern: line 107 calls
uptime and passes
the results back to
line 55. The follow-
ing call to chomp
strips off a trailing
newline and line 62
bundles the result
into a message body;

the Send() method sends this result off
to the requesting chat partner.

But how does the agent running on a
Linux computer go about switching on
my bedroom lights?

Figure 3 shows the setup. In the
USA, there is so-called X10 technology
to transmit signals across the power
cabling in our homes (of course it only
works with the US type voltage), and
communicate with computers via serial
(or USB) interfaces. A wide range of
X10 devices are available for various
sorts of home automation. In addition to
simple power switches, you will find
X10-enabled surveillance camera sys-

tems, motion sensors, alarm systems,
MP3 players, televisions, and metal
detectors.

Each X10 control unit (Figure 4) has a
house code (A-P) and a unit code (1-16)
which the control unit (e.g. Figure 5) has
to select in order to switch on the correct
light (and not your neighbor’s). X10 is
not expensive: a four-component starter
kit with all kinds of goodies and a
remote control costs somewhere in the
region of $50 to $100 at [3].

Listing lamp.pl shows a short script
that sends codes out via the serial port to
control the lamp. The script only uses
Device::ParallelPort and ControlX10::
CM11 from CPAN, to address the unit
using the house/unit code in line 38. A
subsequent send() with the unit code
and a “J” (for on) or a “K” (for off) pulls
the trigger on the target device. The ser-
ial port used in this example is /dev/ttyS0
in line 34, since the little white box
shown in Figure 6 is attached to the first
serial port on my computer. Admittedly,
my computer is not state-of-the-art, but
that just goes to show how frugal Linux
is with resources. Setting the baudrate to
4800 in line 35 makes sure the X10
device attached to the serial port reliably
gets the message.

Limited Root Power
lamp.pl accesses the serial port on my
computer and needs to run as root to do

69www.linux-magazine.com January 2005

PROGRAMMINGPerl: Building a Jabber Bot

Figure 3: Overview of the Bot-controlled light switch.

Firewall

Powerline

jabber.org

Linux

X10
Serial port

Jabber client

LampX10
wall socket

House Code F
Unit Code

Figure 4: The X10 control unit waits for signals
and switches the power on or off.

Figure 5: The X10 control unit with a serial con-
nector can send signals from the computer to the
control unit over power cables.

Figure 6: Switching on a bedroom light via the
Internet.

bit means that a ‘normal’ user can
run the compiled binary lamp, and
therefore the Perl script /usr/bin/lamp.pl
as root:

$ ls -l /usr/bin/lamp*
-rwsr-xr-x 1 root root 11548U
Oct 2 08:48 lamp
-rwxr-xr-x 1 root root 742 U

Oct 2 08:45 lamp.pl

In this configuration, only root can mod-
ify the lamp.pl script, but a normal user
can run lamp.pl with the effective ID of
root.

Bot Security
And now back to the bot:

To prevent any old Jabber client from
sending commands, agent.pl only
accepts messages from people in its ros-

so. Line 29 checks the effective user ID
and quits if the ID is not 0 for root. As
the Jabber client runs with a non-privi-
leged user ID, Listing lamp.c defines a C
wrapper, which you can compile simply
by calling

gcc -o lamp lamp.c

Setting the setuid via chmod 4755 lamp

70 January 2005 www.linux-magazine.com

Perl: Building a Jabber BotPROGRAMMING

001 #!/usr/bin/perl
002 #############################
003 # agent -- Jabber bot
004 # operating behind firewall
005 # Mike Schilli, 2004
006 # (m@perlmeister.com)
007 #############################
008 use warnings;
009 use strict;
010
011 use Net::Jabber qw(Client);
012 use Log::Log4perl qw(:easy);
013 use LWP::Simple;
014
015 Log::Log4perl->easy_init(
016 {
017 level => $DEBUG,
018 file =>
019 '>>/tmp/agent.log'
020 }
021);
022
023 my $JABBER_USER =
024 'mikes-agent-receiver';
025 my $JABBER_PASSWD = "*****";
026 my $JABBER_SERVER =
027 "jabber.org";
028 my $JABBER_PORT = 5222;
029
030 our %ROSTER;
031
032 my $c =
033 Net::Jabber::Client->new();
034
035 $c->SetCallBacks(
036
037 message => sub {
038 my $msg = $_[1];
039
040 DEBUG "Message '",
041 $msg->GetBody(),
042 "' from ",

043 $msg->GetFrom();
044
045 if (!exists
046 $ROSTER{ $msg->GetFrom()
047 }) {
048 INFO "Denied (not in "

.
049 "roster)";
050 return;
051 }
052
053 DEBUG "Running ",
054 $msg->GetBody();
055 my $rep =
056 run_cmd(
057 $msg->GetBody());
058 chomp $rep;
059 DEBUG "Result: ", $rep;
060
061 $c->Send(
062 $msg->Reply(
063 body => $rep
064)
065);
066 },
067
068 onauth => sub {
069 DEBUG "Auth";
070 %ROSTER =
071 $c->RosterGet();
072 $c->PresenceSend();
073 },
074
075 presence => sub {
076 # Ignore all sub-
077 # scription requests
078 },
079);
080
081 DEBUG "Connecting ...";
082
083 $c->Execute(

084 hostname => $JABBER_SERVER,
085 username => $JABBER_USER,
086 password => $JABBER_PASSWD,
087 resource => 'Script',
088);
089
090 $c->Disconnect();
091
092 #############################
093 sub run_cmd {
094 #############################
095 my ($cmd) = @_;
096
097 # Find out external IP
098 if ($cmd eq "ip") {
099 return LWP::Simple::get(
100 "http://perlmeister" .
101 ".com/cgi/whatsmyip"
102);
103 }
104
105 # Print Load
106 if ($cmd eq "load") {
107 return `/usr/bin/uptime`;
108 }
109
110 # Switch bedroom light on/off
111 if ($cmd =~
112 /^lamp\s+(on|off)$/)
113 {
114 my $rc =
115 system(
116 "/usr/bin/lamp $1");
117 return $rc == 0
118 ? "ok"
119 : "not ok ($rc)";
120 }
121
122 return "Unknown Command";
123 }

Listing 1: agent.pl

will put these clients on its buddy
list. An empty presence handler stops
this from happening.

Installation
When you install the bot, you have to
set up its buddy list. The best way to
do this is to use a gaim client ([4]),
create two new jabber accounts
mikes-agent-receiver and mikes-
agent-sender, and have mikes-

agent-receiver put mikes-agent-sender on
its buddy list (Figure 7).

If both accounts are on line, the dialog
shown in Figure 8 pops up on
mikes-agent-sender, and you need to
click “Authorize” to tell the server to
allow the action to happen. mikes-
agent-sender is then asked if it wants to
put mikes-agent-receiver on its buddy list
(Figure 9); of course, it makes sense to

do this to enable the sender to click on
the name in the buddy list to send a
command to the bot.

After logging out, make sure the
account mikes-agent-receiver is only used
by agent.pl and not by other clients, to
prevent them from messing up the
buddy list, which provides the autho-
rization mechanism.

When you launch agent.pl, mikes-
agent-receiver should appear in the
buddy list for mikes-agent-sender (Figure
2). The logfile, /tmp/agent.log, logs the
steps in case your setup needs some
debugging.

Be careful when you are applying
modifications; a tiny implementation
error could tear a hole in your firewall –
so watch out!

Of course, if you live in an area where
the electrical infrastructure does not sup-
port X10, you’ll need to find another way
to communicate with your light switch.
But, regardless of the project, these tech-
niques will help you get started with
building an instant messaging agent. ■

ter. When a message arrives, line 45
checks if the sender is on the list, and
refuses access if not.

The presence request handler defined
in line 75 is empty and ignores any
requests from clients wanting to put the
agent on their buddy lists. Net::Jabber::
Client comes with a default handler that
accepts presence messages from just any
other client on the network. This would
not be so bad, but without further ado, it

72 January 2005 www.linux-magazine.com

Perl: Building a Jabber BotPROGRAMMING

01 main(int argc, char **argv) {
02 execv("/usr/bin/lamp.pl",
03 argv);
04 }

Listing 3: lamp.c

[1] Listings for this article:
ftp://www.linux-magazine.com/
Magazine/Downloads/50/Perl

[2] “Jabber Developer’s Handbook”, Dana
Moore and William Wright, Developer’s
Library, Sam’s Publishing, 2004.

[3] X10 devices from:
http://x10.com

[4] Gaim, the universal instant messaging
client:
http://gaim.sourceforge.net

INFO

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, California.
He wrote “Perl Power”
for Addison-Wesley
and can be contacted
at mschilli@perlmeis-
ter.com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Figure 7: Using a gaim client to add the commanding
agent to the list of approved senders.

Figure 8: Adding the sender to the bot’s buddy
list.

Figure 9: Adding the bot to the sender’s buddy
list.

01 #!/usr/bin/perl
02 #############################
03 # lamp -- x10 light switch
04 # Mike Schilli, 2004
05 # (m@perlmeister.com)
06 #############################
07
08 use warnings;
09 use strict;
10
11 use Device::SerialPort;
12 use ControlX10::CM11;
13
14 my $UNIT_CODE = "F";
15 my $HOUSE_CODE = "1";
16
17 my %cmds = (
18 "on" => "J",
19 "off" => "K",
20);
21
22 die "usage: $0 [on|off]"
23 if @ARGV != 1

24 or $ARGV[0] !~
25 /^(on|off)$/;
26
27 my $onoff = $1;
28
29 die "You must be root"
30 if $> != 0;
31
32 my $serial =
33 Device::SerialPort->new(
34 '/dev/ttyS0', undef);
35 $serial->baudrate(4800);
36
37 # Adress unit
38 ControlX10::CM11::send(
39 $serial,
40 $UNIT_CODE . $HOUSE_CODE);
41
42 # Send command
43 ControlX10::CM11::send(
44 $serial,
45 $UNIT_CODE . $cmds{$onoff}
46);

Listing 2: lamp.pl

