
58

In addition to managing personal
web sites, I also volunteer as a web-
master for a local community sports

club. A common complaint by everyone
at the club is that no one takes the time
to provide current information. Some of
the sections at the site provide no infor-

mation at all, simply because no one has
the time to keep the pages up to date.
I have the technical expertise to manage
the site, but I can’t devote the time to
maintaining every individual page.

I needed an easy way for the club mem-
bers to put the information online them-
selves.

The simplest way for a novice user to
maintain a website is to write the text
with some text editor and then upload
the text files using an FTP client. Unfor-
tunately, most of the people in our club
have trouble even with that. So, to get
as many people as possible to provide
current information, I needed to make
updating the information as simple as
possible. I created a database for news
items and upcoming events, allowing the
users to add information to web-based
forms. However, I didn’t have an easy
solution for allowing users to modify the
actual content pages; that is, until I ran
into FCKEditor.

FCKEditor is a text editor that resides
on the server and is accessible through
an ordinary browser window. By inte-
grating FCKEditor into the website, I
created a convenient means for users to
edit their own web pages. Even the most
inexperienced users were comfortable
working in a text editor, so FCKEditor
provided a solution that was even easier
than a comparable Zope or Wiki-based
editing environment. The challenge, of
course, was figuring out how to integrate
FCKEditor into the website. In this arti-
cle, I’ll describe how to build in online
editing with FCKEditor.

Full-Featured Editor
FCKeditor (Figure 1) has all of the
features most people need in a word
processing tool, including a full-featured

toolbar. Below the FCKEditor toolbar is
the WYSIWYG text area. FCKEditor

works with almost any browser
and in any environment.

Small sites often have outdated information because the webmaster doesn’t have time to keep all the pages

up to date. Even something as simple as a spelling correction might take days to change. FCKEditor frees the

webmaster by letting the user take charge. BY JAMES MOHR

Editing web pages with FCKeditor

EASY FIX

FCKEditorKNOW-HOW

58 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

59

On the server, FCKeditor provides sup-
port for the more common web develop-
ment languages, such as PHP, Perl, Cold-
Fusion, Java, and even ASP.Net. This
support for popular web development
languages allows seamless integration
into your existing site.

FCKeditor is available in over two
dozen languages. By default, the lan-
guage is detected through your browser
settings, but it is easy enough to set a
specific language in the configuration
file.

The biggest downside of FCKEditor is
the lack of documentation. What little
there is makes repeated references to the
samples provided (see the sidebar titled
“Sample Files”). While the samples help
you see what the program can do, this
approach to documentation does require
you to dig through a lot of code to figure
out how to customize the program.

Installation
You can get the latest version at the
FCKEditor homepage [1]. As of this writ-
ing, the latest is Version 2 Release Candi-
date 2. You should definitely get RC2 if
you are running an Apache server on
Linux, as there were some problems
with RC1.

Once you have obtained the installa-
tion package, first create an FCKEditor
directory underneath the document root
of your web server and unzip the pack-
age file into this directory. You can
change the location, but to do so, you
will need to make several changes to the
configuration files (see the sidebar titled
“Setting the Location.”)

Each of the four
PHP samples pro-
vided with the
package (see the
sidebar titled
“Sample Files”)
demonstrates dif-
ferent aspects of
the editor. For
example, one sam-
ple lets you
choose the tool-
bar, another the
language, and so
forth. Each of the
components can
be added to any
page, so you can
build a custom

editor that allows you to select any of
the options.

I chose one of the sample files and
used it as a starting point for my config-
uration. The sample I chose seemed to
be the easiest configuration to adapt. In
my case, I don’t want the users to be
able to tamper with the configuration of
the editor itself because I am trying to
keep the system as simple as possible.
So, I stripped out all of the extra code
related to configuring the editor. I also
turned off the setting that provides auto-
detection of the language. The website is
in Germany, so I set the default language
to German:

$oFCKeditor->Config U
['AutoDetectLanguage'] =U
 false ;
$oFCKeditor->Config U
['DefaultLanguage'] = 'de' ;

If you are setting up FCKEditor for your
own environment, choose a sample file
that fits your situation and adapt the set-
tings as necessary.

Loading Text into the Editor
The first step in integrating FCKEditor
with an existing website is to define a
means for loading text into the editor.
The Value attribute contains the actual
text that appears in the editor window.
You can define the text that will appear
in the FCKEditor window by simply set-
ting the Value attribute:

$oFCKeditor->Value = U
'Your text' ;

You could set this value to an empty
string to start up with a completely
empty browser, but one of the best
features of FCKEditor is the ability to
edit existing pages. So, we need to figure
out how to get the contents of an exist-
ing file into the editor. The simplest
method is to use the PHP function file_
get_contents():

$oFCKeditor->Value = U
file_get_contentsU
("path_to_file") ;

Warning: file_get_contents() can load a
URL or load the file directly. The URL
might contain server-side includes,
inline frames, or any number of other
things. Thus, the file that ends up in
your browser, might not be the one you
really want to edit. For me, the safest
approach is to avoid URLs. Before pass-
ing the filename to file_get_contents(), I
checked to make sure it was loading a
local file.

Even using this method, the contents
are still more or less static. We need a
way to dynamically pass in a file name
that we can load. You can do this easily
by passing the filename as part of a
query string:

http://linux.local/FCKeditorU
/jimmoedit.php?filename=U
index.html

Then, inside the editor script(jimmoedit.
php in this example), you read the file-
name variable:

$filename = U
$_GET['filename'];

You will find several samples for each
development language in the _samples
directory. I use PHP, so I used the files in
the php directory and copied one of the
sample files from _samples/php into the
FCKEditor root directory. I then copied
the sampleposteddata.php and _sam-
ples/sample.css files. In my case, I used
sample2.php and called it jimmoedit.
php (for simplicity’s sake). This is the file
that you would need to load, and the file
where you need to start making any
changes. I also renamed the css file to
jimmo.css and changed the jimmoedit.
php file accordingly.

Sample Files

Figure 1: The FCKEditor main window.

KNOW-HOWFCKEditor

59ISSUE 59 OCTOBER 2005W W W. L I N U X- M A G A Z I N E . C O M

Be careful here, because it is possible to
create a query string that does a lot more
than just load a file on your web server.
For example, a malicious user could
specify the file .htaccess or any other
sensitive file on your system. Therefore,
you should always check to see that the
value written to $filename is valid and
logical before you load the file.

Access to the Editor
More than likely, having your users type
in the query string by hand is too much
work, so we need to think of an easier
way to pass the file. How you do it
depends on how the page is generated,
who is allowed to edit the pages, and so
on. On one site that I manage, the pages
are generated using PHP, so I can check
whether the user is logging in or not. If
so, an “Edit this page” link contains the
full URL to the editor, including the rela-
tive path for the appropriate file.

On another site, things are a bit more
complex because I am not using PHP or
any other scripting language to help me
figure out if the user is logged in. The
solution is to put the editor into a pass-
word protected directory on the server
using the Apache standard basic authen-
tication. I can determine the name of the
user who is logged in, like this:

$current_user = U
$_SERVER["PHP_AUTH_USER"];

After verifying that the user is logged in,
I determine the group to which the user
belongs. I need to determine the group
because the system determines the files
the user is allowed to edit based on the
user's group affiliations. For example, a
person in the volleyball group can only
edit pages within the volleyball direc-
tory.

Since the directory names are the
same as the group names, it is easy to
figure out the correct directory. I can
then use various PHP functions to search
the directory and create an HTML list of
available files, generating corresponding
links that then pass the file name to edit.
One key advantage of this approach is
that I can filter out any files that users
should not have access to or should not
be editing.

Using the Editor
The editor itself behaves the same way
as any other text editor. For example, by
selecting text and then clicking the
appropriate button, you can change the
text to bold or italic, change the font
size, and so forth. This does not just
apply to standard tags – FCKEditor will
insert various styles into the tag. The
editor even provides a source code
mode, which allows you to edit the
HTML code directly.

One feature that really impressed me
was the table editor. When you click on

the appropriate button, you get the
popup window in Figure 2. As with
other HTML editors, you can define the
dimensions of the tables (both number
of cells and pixels), border, cell padding,
and so forth.

Once the table is inserted, you can
change a wide range of table properties.
If you select the table by left-clicking it,
you can drag the side or corners to
change the size. Right-clicking the table
allows you to insert or delete rows, col-
umns, and even cells. You can also split
rows or columns, and even change the
basic properties of the entire table. Other
features let you create lists, add links
and images, or change the background
colors.

Browsing the Server
FCKEditor provides a mechanism for
browsing files on the server. This brows-
ing is accomplished by using “connec-
tors” for the various languages. For
example, the connector and the related
code for the PHP editor are located in
editor/filemanager/browser/default/
connectors/php.

You define which connector the
browser should use in the fckconfig.js
file. There are two variables in the
fckconfig.js file you need to set: FCK
Config.LinkBrowserURL and FCKConfig.
ImageBrowserURL. By default, these
variables point to the ASP connector, so
you will also need to uncomment the
PHP connector.

By default FCKEditor will look for
files in different directories based on
their type. For example, you may wish
to create a special directory for files and
another for images. So that the path is
not dependent on the resource type, you
need to change the connectors/php/
io.php file. First, in the function GetUrl
FromPath() change the line

return $GLOBALSU
["UserFilesPath"] U
. $resourceType . $folderPath ;

to

return $GLOBALSU
["UserFilesPath"] U
. $folderPath ;

Then, in the function ServerMapFolder()
change the line

Although the instructions say to unzip
the package into the FCKEditor directory
under your web server’s DocumentRoot,
you can basically place the package any-
where. To change the location, you need
to set the BasePath property of the editor
object. For example, in the jimmoedit.
php file you’ll have an entry like this:

$oFCKeditor->BasePath = U

"/FCKeditor/";

Note that prior to this entry, you have
already created the new instance of the
editor. So here you are specifying the
BasePath attribute for that instance
(since $oFCKeditor is the current
instance of the editor object).

If you look at the comments in the sam-
ple, you will see that BasePath is deter-
mined based on the _samples directory.
Either you set the property here or within
the file that creates the editor class. For
PHP, this would be the fckeditor.php file.

(In addition to creating the FCKEditor
object, the fckeditor.php file is also
responsible for creating the HTML that
defines the inline frame that is the editor
itself, plus the necessary code to create
the toolbar, and so forth.) Within the con-
structor function for the editor class, you
set the BasePath attribute (as well as
several other useful attributes). In this
example, since the path is hardcoded in
the constructor, you should comment
out or remove the extra code within the
jimmoedit.php file.

Next, you have to change the path to the
actual editor code. This location is
included at the top of the jimmoedit.php
file using a relative path:

include("../../fckeditor.php") ;

Since the editor file is now in the FCKEdi-
tor root directory (the same as the fckedi-
tor.php file), you need to remove the rel-
ative path.

Setting the Location

FCKEditorKNOW-HOW

60 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

$sResourceTypePath = U
$GLOBALS["UserFilesDirectory"]U
 . $resourceType . '/' ;

to

$sResourceTypePath = U
$GLOBALSU
["UserFilesDirectory"] . '/' ;

Next you need to change the path for the
user files. This is done in the connector.
php file. Near the top of the file, you will
find a reference that looks like this:

$GLOBALS["UserFilesPath"] = U
'/UserFiles/' ;

Change the location to a directory of
your choice relative to the Document-
Root of your server.

Storing the Edited File
When you are done editing the file, click
the Submit button, which sends your
text to the defined action (just like any
web form). The default is sampleposted-
data.php, which I simply renamed
posteddata.php.

If you look at the sample post file, all
it is doing is taking the content of the
input area from the form and displaying
it. However, there is no reference to the
original file, quite simply because the
samples weren’t written to read the con-
tents from files. To allow the script to
store the file, we must pass it the name
of the file. I did this by setting a hidden
variable within the form:

<input type="hidden" name=U
"filename" value=U
"<?=$filename?>">

Then on the post page I know which file
has been edited.

One thing to note is that all the sample
post script does is provide a framework

for you to create your own mechanism
to save the file. In the sample post script,
any backslashes added to the form are
removed and the HTML code is con-
verted to HTML entities by the following
line:

$postedValue = U
htmlspecialcharsU
(stripslashes($value)) ;

That means all of your tags lose their
special meaning. For example, the less-
than character (<) is converted to <.
This is done so that you can see the
HTML code that was produced. Other-
wise, the code is interpreted by your
browser.

Although this is good as a demonstra-
tion and good for testing, I find no real
value in displaying the HTML code, par-
ticularly if your users are not tech-savvy.
Instead, you can do what I do and pro-
vide the editor code as a preview. You
can create a form underneath the pre-
view with just a single button that actu-
ally saves the file.

Keep in mind that once you have
saved the file, the old version is no lon-
ger available. To prevent irreparable
damage to the original, I create an
archive sub-directory in every directory.
Prior to saving the file, I copy the origi-
nal to the archive directory, adding a
time stamp to the file name. Thus, if
someone messes up the file, the original
can be easily restored.

Also, keep in mind the environment in
which the file will be displayed. In cases
where the file is loaded directly, some-
one could add a server-side include or
some PHP code to gain improper access.
You should therefore parse the code
before you save it.

Saving the file at this point is very
simple. You have the filename in the
$filename variable and the contents in
$FCKeditor1. Use the appropriate PHP
function to save the file.

Configuring the Editor
You can configure the appearance and
functionality of the editor to suit your
specific site. For example, you can use
your own style sheet to change the
appearance. By default, the editor uses
the style sheet _samples/sample.css,
which is accessed in the sample files via
the relative path ../sample.css.

In my case, I felt that the default tool-
bar with all of the wonderful features
was just too much for my users. The
goal for us was to provide a simple way
of editing files online, so we needed a
way of limiting what was available. By
default, FCKEditor provides two differ-
ent tool sets: Default and Basic. The
Basic tool set only provides a half-dozen
options, so that was really too few. We
needed something in the middle.

Fortunately, FCKEditor provides a very
simple way of changing which tools are
available. In the fckconfig.js file, you will
find that the tool bars are defined as fol-
lows:

FCKConfig.ToolbarSetsU
["Basic"] = [...];

The simplest way to create your own
toolbar is to copy an existing toolbar,
rename it accordingly, and then add
or remove tools as appropriate. Within
the square brackets, you will see the
features that are provided by this specific
toolbar. By including a new set of square
brackets, you insert a separator between
the toolsets (don’t forget the comma
between the tool sets). By including '-'
within a tool set, you insert a somewhat
smaller separator.

Conclusion
Although FCKEditor provides many
more features, this article should provide
you with enough of the basics to get
started. By digging through the various
configuration files, you will find many
options for changing the FCKEditor to
suit your needs. ■

James Mohr is
responsible for the
monitoring of sev-
eral datacenters for
a business solu-
tions provider in
Coburg, Germany.
In addition to run-
ning the Linux Tutorial web site
http:// www. linux-tutorial. info,
James is the author of several books
and dozens of articles on a wide
range of topics.

T
H

E
 A

U
T

H
O

R

[1] FCKEditor homepage:
www. fckeditor. net

INFO

Figure 2: HTML table configuration.

FCKEditorKNOW-HOW

62 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

