
58

Backup policies come in all
shapes and sizes. Cheap policies
use simple scripts and cater for

the worst case by calling the operating
system’s native tools (tar, dd, cpio). This
approach is fine for low-volume local
backup or for environments with just a
few clients.

Mid-priced backup policies use more
sophisticated techniques. Tools such as
rsync and Amanda are effective for
many environments, but these tools
often require advanced scripting skills
and have some hidden limitations
regarding time, volume, and hardware
support.

Enterprise-level tools remove many of
these restrictions but typically come at a

high price. An excep-
tion to this rule is

Bacula [1], a free
backup utility

that offers a
variety of

features
more

typically associated with high-priced
commercial products.

Bacula is not monolithic but is,
instead, a set of various daemons and a
user interface. The daemons have fixed
responsibilities and use the network to
communicate. This design distributes
the work load, with control centered on
the admin workstation, accounts han-
dled by a database server, and the hard
work – that is, reading and writing data
– handled by a team of client-side file
daemons and storage daemons on the
backup servers. Of course, you can also
use a single machine for multiple func-
tions, which leads to a flexible and easily
scalable architecture (Figure 1).

Central Leadership
The boss in charge of the team of dae-
mons is appropriately known as the
director. The director knows what to
store where and can locate the required
files if a user needs to recover lost data.
The director also knows the schedules,
clients, storage locations, and details of

planned jobs, although the actual
backup is performed by subordinate dae-
mons. Bacula’s director daemon also has
the distinction of being the only daemon
in the Bacula system that gets to talk to a
human user.

The director stores the configuration
details in an ASCII file (bacula-dir.conf)
as hierarchically structured resource
descriptions. The top notch in the
hierarchy is taken by the job
resource, which collates the settings
for a specific job. These job set-
tings include the job type
(backup, restore, verify or
admin), the execution time, or
the level (for a backup: full,
incremental, or differential).

To make things easier,
most details are grouped in
sub-resources, so-called
directives. Common fea-
tures of similar jobs can
also be grouped as
JobDefs resources to
form a job class,
which other job
descriptions can
then reference.

Better backups with the daemon-based Bacula backup system

BACKUP POWER
When backup jobs become too challenging for a script, the daemon-

based free backup tool Bacula may be the answer.

 BY JENS-CHRISTOPH BRENDEL AND MARC SCHÖCHLIN

D
en

n
is E

lem
a

BaculaSYSADMIN

58 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

59

This approach makes for a leaner config-
uration file and saves typing.

For example, the Schedule resource
type defines schedules that run jobs at
specific intervals and support almost any
kind of schedule. The FileSet resource
lists the directories and files you are
planning to back up. Directories are han-
dled recursively, and this means that /
will give you the simplest type of full
backup, although you might prefer to
exclude a few directories, such as /tmp,
or hidden files such as .journal or .fsck.

The backup will only traverse file-
system boundaries when explicitly told
to do so. The default setting stays in the
current filesystem to avoid the danger of
entering infinite loops or inadvertently
saving file servers. If you want to keep
this security measure, you need to enu-
merate every single local filesystem the
client has mounted in order to create a
complete backup.

Of course, Bacula also supports more
complex jobs. For example, you can ref-
erence an external file list, shell expres-
sions, or scripts that produce backup
lists at runtime. As inline shell com-
mands mean escaping non-standard
characters and blanks, scripts are typi-
cally the easier option.

Imagine you want to back up all the
configuration files in /etc and all the hid-
den files and directories in the user jcb‘s
home directory. The following mini-
script would take care of this backup
task:

#!/bin/sh
find /home/jcb U
-maxdepth 1 -name ".*"
find /etc -name "*.conf

In the preceding example, the FileSet to

Figure 1: Divide and conquer – Bacula distributes backup functionality across the network, but

storage is central.

Configuration,
control and monitoring
of backups

Storage of metadata
for all backed up files

Monitoring daemons

File daemon supplies
data to be backed up

Central storage and
control of tape libraries

Director initiates
backups with
predefined parameters

Console

Client(s) Storage server

Ba
ck

up
 s

er
ve

r
Da

ta
ba

se
 s

er
ve

r

Admin Workstation
(tray monitor)

Bacula is definitely the Open Source
backup system that comes closest to
catering to professional needs in large-
scale environments. The backup tool is
undoubtedly suitable for production use
in many cases, but there are still a few
items on the wish list for future versions:

• Security: At present, encrypted back-
ups are not supported by the daemon.
In other words, an attacker could sniff
the traffic on the local network to
access the backup data. This is a genu-
ine concern in environments with sen-
sitive data, or wherever external pro-
viders offer backup services. As a
workaround you can set up an SSH
tunnel to encrypt the communication
between the file and storage daemons
and between the file daemon and the
director. In Windows environments, at
least, it would also make sense to inte-
grate a virus checker. Solutions for this
issue are in planning at present.

• Large libraries: Although multiple
backup jobs can run simultaneously,
there is still a need for more efficient
parallel processing. For example, a file

daemon cannot use multiplexing to
provide data to multiple storage dae-
mons, although this configuration
would improve performance for
higher volumes of data. Drive pools
capable of statically assigning a num-
ber of drives to a specific job, and
allowing the job to select any free
drive in the pool, are not supported at
present. There is also no support for
dynamically assigning idle drives to
pending jobs. This makes it difficult to
put a library with multiple tape drives
to optimum use.

• GUI: There is currently almost no
graphical interface. Although some
solutions have been attempted, they
do not extend beyond simple text-
based menus. For example, a file
browser for GUI-based selection of
files, or a calendar to help setting up
schedules, would be useful. There is
no configuration assistant to help
administrators. Experienced Unix
gurus might not mind this, but today’s
command line challenged users will
tend to opt for products that give them

top to tail point&click support and
online help.

• Online backup: There are no modules
for online database backups. There is
also no means for backing up applica-
tions that use open files and locking
these files to prevent access by others.
The director partly compensates for
this by allowing you to run client and
server-side scripts prior to and follow-
ing any job, which in turn allows you
to stop and restart the applications in
question. As both backup and restore
jobs can use FIFOs as their data source
or target, it is possible to handle data
from running applications without tak-
ing a detour via a file. This is an inter-
esting alternative, although it can’t
replace a full online backup.

• Extras: Commercial backup software
gives users a number of useful extras
that Bacula does not have. For
instance, commercial systems often
provide media cloning to mitigate the
effect of irrecoverable read errors, as
well as tools for managing the
resumption of interrupted sessions.

Future

SYSADMINBacula

59ISSUE 57 AUGUST 2005W W W. L I N U X- M A G A Z I N E . C O M

match would be as shown in the follow-
ing:

FileSet {
 name = "ConfigSet"
 include {
 Options {
 signature = MD5
 }
 File = U
 "|/etc/bacula/confbackup.sh"
 }
}

Besides using files, lists, or scripts,
administrators can also specify raw
devices as data sources (although these
raw devices can only be mounted read-
only). And finally, the backup can even
read data from FIFOs, which link an
active application with the backup. This
unusual level of flexibility has its price:
selecting sources is a lot less intuitive
than simply letting an admin select the
files in a GUI-based interface. A combi-
nation of both approaches would be
ideal.

Includes Pool
Another configuration directive defines
volume pools and thus sets itself apart
from simple solutions. A pool groups a
number of tapes logically, and thus
allows a backup to extend beyond the
physical capacity of a single tape. When
the backup job reaches the end of the
tape, Bacula continues the job on the
next available tape in the same pool.
This approach allows you to recycle
older tapes in the group after a configu-
rable period has elapsed.

Pool resources are controlled by a
number of settings – for example, the

media re-use wait period or the
maximum number of lifecycles.
These settings apply to all the
tapes in the pool, which is a good
thing; administrators do not need
to set preferences for each
medium in a group, although the
option is available.

Assigning tapes to different
pools also helps organize tapes
by type of usage, thus avoiding a
mix, or even an overwriting, of
tapes used for incremental and
full backups. You can also define
pools for individual clients,
weekdays, and so on.

Automatic tape changing
assumes you have a tape library.
Bacula supports a number of tape
robots, also known as autochangers or
autoloaders with DAT, VXA2, DLT, LTO,
and AIT drives.

The Mtx [2] tool that Bacula uses to
control tape libraries even supports bar-
code labels, which allow a robot to iden-
tify a tape without loading it in a drive.
In some cases – for example when tapes
have been manually resorted within a
library – tapes need to be realigned with
their previous locations. If this happens,
you will definitely appreciate barcode
support.

Catalogs
Whenever Bacula puts a file on a tape, it
also stores details such as the file size,
attributes, signature, last change date, or
the time and location of the backup in a
database known as the catalog. This
directory is the third major unique sell-
ing point that sets Bacula apart from
home-grown scripts, as it allows targeted
recovery of individual files without the

need for reading a
complete archive.
The files you wish
to recover can be
selected simply by
referencing the
meta-data, which
includes the posi-
tion of the
required files on
the tape. There is
no need to read
the tape sequen-
tially from top to
tail; instead, Bac-
ula can position

the tape (at the start of the job at least).
Additionally, the catalog stores a history
of all backup jobs.

Bacula can use any popular SQL data-
base for management tasks. The package
includes setup scripts for PostgreSQL,
MySQL, and SQLite. Support for these
popular SQL variants allows administra-
tors to backup the database and sup-
ports manual access if worst comes to
worst. A lost or inconsistent catalog is
one of the most critical problems that
can affect a backup set. To mitigate the
effect of a lost catalog, the Bacula pack-
age includes scripts that store the catalog
in an ASCII file while a job is running. If
something goes wrong, at least the pre-
vious version is easily restored.

Incidentally, you can use Bacula’s
directory of stored files to perform a sim-
ple kind of intrusion detection a la Trip-
wire or Aide. Two integrated functions,
which you can run independently of the
backup or recovery features, are
designed to collect meta-data for com-
parison with the filesystem. You might
discover unauthorized modifications this
way.

Teamwork
Of course, a director is nothing without a
staff. In Bacula, the director rules over
two groups of subordinates: one or mul-
tiple storage daemons and a number of
file daemons. The latter run client-side
and use the network to supply the data
to the storage server. This is where the
storage daemon runs, supporting the
tape drive or library. If necessary, the
storage daemon can also back up to
disk, and this could be a useful short- to
mid-term solution for storing the latest

Figure 2: JBacula, an independently developed project, helps you

configure the directory daemon.

Figure 3: GConsole does not give you a GUI, but it

does at least give you a graphic console with a few

menus that does not need a terminal window.

BaculaSYSADMIN

60 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

backup in the light of plummeting hard
disk prices.

File daemons are available for Linux,
most Unix-style operating systems (for
example Solaris, AIX, HPUX, FreeBSD,
and even MacOS X), and all Windows
versions. This more or less removes the
need for detours via Samba or NFS,
although both are supported.

Backward March!
Data recovery reverses the backup pro-
cess. When told to do so by the director,
the storage daemon sends the files you
wish to restore to a file daemon, which
then stores those files on the client. Files
are not normally restored to their origi-
nal location; instead a complete file-
system tree is restored below a special
directory. The restore job configuration
can specify which directory this is; of
course, the filesystem needs to have
enough free space to accept the restored
files. The default is /tmp/bacula-restores.

You can change this behavior by speci-
fying the root directory as the recovery
target. This restores the rescued files to
their original locations. A word of cau-

tion at this point: Bacula does not sup-
port conflict resolution policies. If a
recovered file exists at the target loca-
tion, the file is not protected or renamed
but simply overwritten, and that may
not be what you intended.

There are a number of approaches to
selecting files to restore. All of them lead
to a virtual directory tree that shows all
files placed on tape. You can navigate
the directory tree using Unix-style com-
mands (cd, ls, pwd, and so on). And you
will need to issue commands to tag files
and directories for recovery (again a
GUI-based selection interface would be a
welcome alternative).

As a special service, Bacula lets you
combine the last full backup for a client
and all subsequent incremental backups
in this view. You can also restrict the
selection to all files backed up before or
after a specific date and time.

Current Knoppix versions [3] include a
Bacula file daemon and console, which
makes Bacula useful as a simple disaster
recovery solution, assuming you make a
note of the partitioning for any disks you
back up and also store Bacula’s boot-

strap files at a separate location. A Bac-
ula recovery CD, intended to reanimate a
system after a complete failure, will not
work with later Linux kernels (2.6.x),
but a remake is under discussion.

Designating
Responsibilities
Access to the Bacula console is governed
by a user’s execute permissions; the
application does not ask users to authen-
ticate, and thus does not support differ-
ent levels of privileges for its users.
However, you can configure variants of
the console application that only support
specific jobs or command subsets, File-
Sets, media pools, or devices. This gives
administrators a useful workaround that
serves as a form of user management.
The workaround is not granular enough
to allow any users to restore their own
files without asking the administrator,
but it does support delegation of tasks
within an administrative group.

In many cases, asking a user to restore
data would prove too much of a chal-
lenge, as Bacula does not have a
point&click interface. Tools such as
Wxconsole and Gconsole provide a
few menus to remove the need to
memorize and type some commands,
but they still have a command line
option for commands you can’t execute
in any other way. The Java-based JBac-
ula [4] tool, which is a separate project,
provides templates and tooltips that
facilitate the directory daemon confi-
guration (Figure 2).

Conclusions
Administrators who are not afraid of the
command line will find Bacula a very
useful, extremely flexible backup system
with many professional features. Bacula
is also well-documented and integrates
easily with a heterogeneous system envi-
ronment. ■

[1] Bacula homepage:
http:// www. bacula. org

[2] Mtx for library control:
http:// mtx. badtux. net

[3] Knoppix with Bacula software:
http:// www. knopper. net/ knoppix/
index-en. html

[4] JBacula:
http:// jbacula. sourceforge. net

INFO

At the beginning of 2004, an Internet
Service Provider (ISP) based in Stuttgart,
Germany was looking for a replacement
for its slightly ancient backup system.
Bacula was one of the major contenders,
along with a number of commercial
solutions.

What convinced the provider, besides
the fact that Bacula would mean big sav-
ings on licensing fees, was that Bacula
was independent of any manufacturer’s
product policy. The ISP was also looking
for a solution that would allow them to
reference their internal billing systems
and support centralized configuration.

The ISP decided to set up a pilot installa-
tion to put the system through its paces.
In the pilot phase, 32 FreeBSD produc-
tion systems were backed up over a
period of three months with the free
Bacula backup software running parallel
to existing backup solutions.

After successfully completing initial test-
ing with a tape robot, the ISP opted for a
combination with an LTO 1 drive and
multiple hard disks as backup media. A
7-day backup cycle (one full backup, 6
incremental backups) and a retention
period of 4 weeks was established; the
administrators later fine-tuned the cycle

after evaluating the catalog database.

The 32 systems in the test used a multi-
plex approach with 10 to 20 parallel data
streams to back up their data. The Maxi-
mum Concurrent Jobs configuration
parameter had to be tweaked to support
this. Doing so had a positive effect on
differential and incremental backups
with respect to time required for comple-
tion and individual system load. Under
production conditions, the system took
an average of 19 hours to complete a full
backup (of about 450GByte), 90 minutes
for a differential backup, and just 40 min-
utes for an incremental backup.

The MySQL database originally used
showed evidence of performance issues
in long-term tests with increasing vol-
umes of data, which led to MySQL being
replaced by PostgreSQL later; this vastly
improved the performance for restore
jobs and tape recycling.

The optimized configuration was tested
in daily operations over a period of sev-
eral weeks. After completing this final
test, the conclusion was that Bacula was
easily capable of handling the require-
ments placed on it, and that there was
nothing to prevent the ISP from install-
ing Bacula throughout the data center.

Bacula – A Practical Application

SYSADMINBacula

61ISSUE 57 AUGUST 2005W W W. L I N U X- M A G A Z I N E . C O M

