
A
full backup on separate media is
a vital part of any backup strat-
egy, however, the task of restor-

ing backups from tapes, CDs, or DVDs is
often too time-consuming. It sometimes
makes sense to also perform online
backups. There are a few ready-to-run
solutions for online backup, such as
Rsnapshot [2]. This month’s Admin
Workshop will discuss a scripted
approach that uses Rsync and SSH.

Cooperation
The practical Rsync tool, combined with
SSH, takes care of transporting your
backup data across the network. These
tools solve two problems for admins.
First, they save bandwidth, as Rsync will
compress your data if asked to do so.
Second, SSH ensures that sniffers on the
network will be unable to grab your
backups off the wire. An additional
advantage of Rsync is that it transfers
only the changes across the network and
merges them with the last full backup on

the target machine, thus providing the
simplicity of a full backup with the effi-
ciency of an incremental backup.

To find out which data has changed
since the last backup, Rsync either com-
pares a combination of file size and
timestamp or the MD4 checksum of each
file. One of Rsync’s special features is a
sophisticated mechanism which, when
faced with a large file, does not copy the
whole file, but only the changed parts.

Rsync does not handle data transport

across the network itself; instead users
can set up an arbitrary tunnel. The tradi-
tional approach to this was to use the
remote shell, rsh, but now SSH is far bet-
ter suited to the task, as it encrypts the
data in transit. Figure 1 shows you how
a backup with Rsync and SSH works.

To give Rsync maximum protection in
hostile environments, you will need to
configure the SSH service for maximum
security. If you make a mistake here, you
might expose your systems to unautho-

SYSADMINAdmin Workshop: Backups with Rsync

67ISSUE 55 JUNE 2005W W W . L I N U X - M A G A Z I N E . C O M

It is often inefficient to fire up a tape drive whenever you need to back up files or

restore a backup. The Rsync tool pushes critical files to a second computer, where

you can access them easily. BY MARC ANDRÉ SELIG

Insider Tips: Backup with Rsync and SSH

SAFE HARBORS

-a Archive: recursive, with links and all permissions
-v Progress indicator
-c Compare file checksums
-C Ignore non-critical files
-u Update: do not overwrite new files
-H Synchronize hardlinks on the target
-n Don’t do anything, just simulate what would happen
-e ssh Use SSH for the connection
--delete Remove files deleted locally from the target
--modify-window=N Tolerance for time stamps which Rsync should regard as equivalent
-z Zip: Compress files before transferring (saves bandwidth, costs CPU cycles)

Table 1: Rsync Options

w
w

w.sxc.hu

able in the /etc/ssh/sshd_config file
to yes.

Automatic Login
The ssh-keygen program prompts the
user for a passphrase when generating
keypairs. The passphrase is used to
encrypt the private key. This prevents an
attacker who has compromised the
user’s home directory from using the pri-
vate key to log in to other machines.

Of course, you can’t supply a
passphrase to an automatic script. For
this reason, ssh-keygen is quite happy for
the user not to enter a passphrase,
although this does leave the private key
exposed on the local hard disk. A more
secure approach would be to use an SSH
agent. The agent decrypts private keys
after entering the passprhase and stores
the keys in RAM. If you have access to
the sshagent running on the system, you
can use the private key. But attackers
would need to read the main memory to
compromise the passphrase.

If you want to use the agent for cron
and other scripts, you can either call
ssh-agent once at boot time, or after
booting, and pipe the results into a file.
The file will then have the two environ-
mental variables that SSH needs to
access the agent. Admins will normally
want to add the file to their environ-
ments using the . command; this is then
followed by ssh-add and the passphrase.
The agent then has the private key safely
stored in memory:

$ ssh-agent >~mas/tmp/agent.sh
$. ~mas/tmp/agent.sh
Agent pid 21681
$ ssh-add

Enter passphrase for U

/Users/mas/.ssh/id_dsa:
$

Programs requiring access to the agent
just need the simple file.

Tunneling with Rsync
In addition to a simple login on a remote
machine, SSH provides an extremely
important service to the backup system.
It passes any data it receives via the pipe
across the encrypted connection to the
remote SSH daemon.

This allows you to copy a directory to
another computer with a single com-
mand: cd directory && tar cf - . | ssh
user@computer tar xf -. The file created
by tar is piped to SSH and SSH forwards
it to the remote SSH daemon, which
then calls tar to unpack the archive
again. Rsync makes use of this
approach. The -e ssh parameter tells
Rsync to pass any files to SSH. As an
alternative, you could set the
RSYNC_RSH environmental variable:

$ RSYNC_RSH=ssh
$ export RSYNC_RSH

To avoid setting the variable manually,
you can simply add the two lines shown
above to .bashrc in the user’s home
directory. For cron jobs, admins need to
set the variable in the appropriate
crontab. -a, for archive mode, is another
important Rsync option. This option tells
Rsync to transfer all the specified direc-
tories, including subdirectories, files,
symlinks, permissions and timestamps,
owners, groups, and device files. -v is
another useful option, which displays

rized access. As the legitimate successor
to the remote shell, SSH is mainly used
for remote administration. Invoking ssh
user@hostname will take the user to a
shell prompt on the computer hostname.

Keys Preferred
Without specific instructions, SSH will
default to checking the user password
for authentication purposes. Addition-
ally, the server where the user is logging
in will be expected to identify itself. SSH
uses cryptographic algorithms to handle
this. Assuming the entities involved in
the transaction have all authenticated
correctly, the data is encrypted and
pushed across the wire.

Admins do not typically want to
launch backup scripts manually just
because they need to enter their SSH
passwords. Launching backup jobs is
typically the domain of cron. A pass-
word prompt is a big drawback here. To
avoid the prompt, admins can opt for an
authentication mode that uses an asym-
metric keypair for authentication rather
than passwords. The keypair, which
comprises a public and a private key,
uniquely identifies a specific user.

The ssh-keygen -t dsa command gener-
ates an asymmetric DSA keypair. The
private key, which the program stores in
~/.ssh/id_dsa by default, stays on the
local machine. Users need to copy the
public key, ~/.ssh/id_dsa.pub, to all
computers where they need to log on.
To do so, simply store the content of
the public key on the target machine
as ~/.ssh/authorized_keys. This file
can hold multiple keys, to account for
scenarios where users have multiple
keypairs.

From now on, authentication will be
handled by the more secure asymmetric
key approach. The root user is not typi-
cally allowed to log on remotely. The
SSH daemon will ignore a file called
/root/.ssh/authorized_keys. If admins
want to allow a remote SSH root login,
they can set the PermitRootLogin vari-

Admin Workshop: Backups with RsyncSYSADMIN

68 ISSUE 55 JUNE 2005 W W W . L I N U X - M A G A Z I N E . C O M

Figure 1: Rsync creates backups and uses SSH to send them to a second machine. SSH uses a

simple pipe to accept the data. At the other end, the SSH daemon passes the backup to the

Rsync process. Rsync does not transfer unchanged files, thus saving bandwidth.

/etc/ /backup/etc/

RsyncSSHSSHRsync

/home/

/home/diego/

/home/frida/

/etc/crontab

/etc/X11/

...

Connection
Network

/backup/home/

/backup/home/diego/

/backup/home/frida/

/backup/etc/crontab

/backup/etc/X11/

/backup/...

PipePipe

Client Computer Backup Computer

01 #!/bin/sh

02

03 . ~mas/tmp/agent.sh 04 /usr/
bin/rsync -rlptH --delete /
Users/ backupuser@backuphost:/
export/backup

Listing 1: Unsafe Backup

each file that is transferred correctly, as
is -H, which performs a (time-consum-
ing) check and transfers hardlinks.

You might also like to specify the
--delete option, which removes any files
deleted locally from the remote storage
medium, thus giving you an exact copy
of the directory without obsolete files.
Table 1 has some more options.

Example
Listing 1 shows a trivial example that
copies the /Users directory to
/export/backup on the backuphost
machine. Line four of this program reads
the file generated previously for access
to the SSH agent. This is not required if
the administrator opts for a key without
passphrase protection.

The script then calls Rsync. The user
backupuser is logged for access to the
target directory. Instead of using the -a
flag, the -rlpt options are now used to
copy a directory recursively with all its
links, permissions, and timestamps. To

keep the ownership and group permis-
sions for the backup, the script would
need to log on to the backup host as
root.

Additionally, -H and --delete tell Rsync
to sync hardlinks and remove deleted
data from the target computer. The script
needs root privileges to perform a fully
automated backup of all home directo-
ries. The following entry in the
/etc/crontab file calls the script at 02:03
a.m. every night:

3 2 * * * root U

/usr/local/bin/Ursync-backup.sh

Script Security
In Listing 1, the user mas created an
agent.sh file and stored it in his home
directory. Root regularly parses and exe-
cutes this file. Any user with access to
the mas account (including mas himself)
can thus run commands with root privi-
leges!

Listing 2 removes this vulnerability.
The agent.sh file is moved from the
user’s home directory to root’s home
directory, which is (hopefully) protected
against write access. Listing 2 also veri-
fies the user and permissions of
agent.sh.

This said, it would be preferable for
the backup program not to need root
privileges. Unfortunately, this is typically
impossible unless you simply want to
back up a single home directory, in
which case the program can run with
the owner’s privileges.

The clients are not the only computers
with a possible vulnerability. The com-
puter that holds the backup also needs
protection. The scripts in Listings 1 and
2 avoid using the root account on the
target machine and log on as non-privi-
leged users.

The only thing this account needs to
do is to store backups. Although the SSH
key is adequately protected by a
passphrase and the SSH agent, it is still a
weak spot that an attacker could target
to compromise the backup server. And if
the backup program were to log in as
root, the attacker would gain complete
control over the server.

A Single Backup Account
Protects the Data
It makes sense to give the backup
account minimal permissions, just

enough to allow it to get on with its job.
The account needs write permissions for
any directories where it needs to store
backups. This said, the account has
fairly far-reaching privileges on the com-
puters it backs up. In our examples, it is
allowed to copy the full set of home
directories.

Depending on whose data are stored
in these directories, it might be all an
attacker needs to break into one of the
backup source machines. In other
words, the target account and the target
host are endangered by the data on the
source machines, while at the same
time, the host can facilitate an attack on
those machines.

There is a special trust relationship
between the backup source and target,
and cautious administrators will not
want to underestimate the significance
of this trust. SSH allows you to restrict
which programs specific users can run.
And this kind of authorization will help
mitigate the danger of an attacker hijack-
ing your machines. ■

SYSADMINAdmin Workshop: Backups with Rsync

69ISSUE 55 JUNE 2005W W W . L I N U X - M A G A Z I N E . C O M

[1] Marc André Selig, “Admin Work-
shop”: Linux Magazine 05/05, pg. 66

[2] Charly Kühnast, “Target Practice”:
Linux Magazine 04/05, pg. 59

INFO

01 #!/bin/sh

02

03 AGENT=/root/agent.sh

04

05 # $AGENT has to belong to me
(root) and must not be
writeable.

06 # Otherwise: cancel!

07 [-O $AGENT -a ! -w $AGENT]
|| exit 255

08

09 # If everything is okay, pars
and allow connection to

10 # SSH agent

11

12 . $AGENT

13

14 /usr/bin/rsync -rlHpt --delete
/Users/ backupuser@backuphost:
/export/backup

Listing 2: Better Backup

The backup system in our example cre-
ates a full image of the backup directo-
ries on the target machine. You can
restore these directories on the fly, with-
out having to swap tapes or wait for
ages for jobs to complete. For reasons of
security, the system will store the data
with privileges equivalent to nobody on
the target devices. This makes it impos-
sible to backup file ownerships and
group permissions.

There is a workaround for this if you are
backing up home directories, as the
username and group for the files in a
directory is typically part of the directory
name: chown -R mas:users mas will
restore the ownerships for a home direc-
tory belonging to mas. But this will only
work on computers with identical
accounts.

The following miniature script restores
the permissions for all the home directo-
ries on the backup folder by reference to
the directory names:

#!/bin/sh
cd /backup
for i in *; do
chown -R $i:users $i

done

As an alternative, you could allow the
root account to perform the backup –
with all the security risks this implies.

Owners and Backups

