
L
inus Torvalds does not like debug-
gers. In Linus’s opinion, it is far
too easy to throw a piece of code

together and use a debugger to beat
some sense into it.

Alternatives to debugging do exist. For
instance, the careful application of log-
ging removes the need for debugging in
many cases. As you can read at [3],
Log::Log4perl helps you integrate an
appropriate level of debugging into an
application and to remotely control
debugging activities.

Sometimes, however, a programmer
has no alternative. After all, what are
you supposed to do if a program reacts
in an unexpected way, the documenta-
tion does not give you any clues, and the
code (which was written by someone
else, of course) is too complicated to fol-
low? Perl has a debugger that quickly
locates errors by applying breakpoints,
actions, and watchpoints.

Test Run
Listing 1 shows a practical five liner
called wsrv that tells you what kind of
web server is hiding behind a specific

URL. Calling wsrv
http://sun.com, for example, tells
you that Sun uses its own technology:
Sun Java System Web Server 6.1.

If you want to run the script in the
debugger instead, simply start the com-
mand line with perl -d, and then add the
complete path to the script and its argu-
ments. In this case, you would enter:
perl -d wsrv http://microsoft.com. The
debugger starts up and asks the user
for commands after displaying the first
source code “line” (which actually
consists of two lines of text):

Loading DB routines from U

perl5db.pl version 1.27
Editor support available.
Enter h or `h h' for help, or U

`man perldebug' for more help.
main::(wsrv:8): my $url = shift
main::(wsrv:9): U

or die "usage $0 url";
DB<1>

Entering n (for next) at the prompt
silently runs the first statement, extract-
ing the URL from the argument array

@ARGV and leav-
ing it in $url. Since n

only executes a single statement, the
debugger stops right afterwards before
executing the next line:

DB<1> n
main::(wsrv:10): U

my (@fields) = head($url)
main::(wsrv:11): U

or die "Fetch failed";
DB<1>

The next executable instruction is made
up of lines 10 and 11 in wsrv. Instead of
running the line completely with n, let’s
use s (for step) instead to take a closer
look at what’s going on inside the code.
As we can see, the debugger dives head
first into the head function inside the
LWP::Simple module called in line 10:

LWP::Simple::headU
(.../LWP/Simple.pm:70):
70: my($url)=@_;

The l (for list) command displays the
next few lines:

71

PROGRAMMINGPerl Snapshot: Debugging

71ISSUE 54 MAY 2005W W W . L I N U X - M A G A Z I N E . C O M

Some developers condemn the use of

debuggers, but in many cases, a debug-

ger is a programmer’s last hope. In this

Month’s Perl Snapshot, we’ll look at

Perl’s integrated debugger.

BY MICHAEL SCHILLI

Working with the Perl debugger

BUG DOCTOR

0 'text/html'
1 16144
2 1107018115
3 1107028115
4 'Microsoft-IIS/6.0'
main::(wsrv:9): print U

"Server:$fields[4] \n";

The debugger is so kind as to give us the
return values of the head() function
immediately prior to displaying the next
executable line. If we are interested in
the value of the $fields[4] array element,
we can use the debugger’s p (for print)
command to display the value before the
print() instruction in the main program
does that. p $fields[4] at the prompt
gives us Microsoft-IIS/6.0, showing that
Microsoft seems to be using its own
server technology as well.

To output the contents of the entire
@fields array, we could use p @fields,
but this would not format the results in a
user-friendly way. Fortunately, the
debugger’s x function handles more
complex structures effortlessly:

DB<2> x @fields
0 'text/html'

1 16144
2 1107021419
3 1107031419
4 'Microsoft-U

IIS/6.0'

The same thing applies
to hashes which, for
display purposes, we
can even define
directly within the
debugger:

DB<3> %h U

=(donald=> 'duck',
mickey =>'mouse')
DB<4> x %h
0 'donald'
1 'duck'
2 'mickey'
3 'mouse'

If you want key-value
pairs instead of an
array type display, sim-
ply pass a reference to
the hash to x:

DB<5> x \%h
0 HASH(0x837a5f8)

'donald' => 'duck'
'mickey' => 'mouse'

Did you notice that the number in the
prompt has been incremented? It also
appears in the history list, which we can
retrieve by typing H:

DB<6> H
5: x \%h
4: x %h
3: %h=(donald=>'duck',U
mickey=>'mouse')
2: x @fields
1: p $fields[4]

To print the $field[4] element again, all
we need to do is to type an exclamation
mark followed by the number of the his-
tory entry !1. That’s enough for now –
let’s move on to tackle more complex
tasks.

A Real Problem
Let’s imagine a programmer has just fin-
ished a new module called Foo::Bar and
wants to prepare the module for a CPAN
release. The package includes a file
called Makefile.PL (Listing 3), and a file
with the lib/Foo/Bar.pm module, which
may also include some documention
(Listing 2). Calling perl Makefile.PL gives
the following slightly cryptic message:

WARNING: Setting ABSTRACT U

via file 'lib/Foo/Bar.pm'
failed at ExtUtils/U
MakeMaker.pmline 606

Confusing, isn’t it? Makefile.PL uses the
ExtUtils::MakeMaker module, a venera-

70==>my($url) = @_;
71: _init_ua()unless$ua;
72
73: my$request= U

HTTP::Request->U
new(HEAD=>$url);
74: my$responseU
=$ua->request($request);
[...]

To move downward, without actually
executing code, we can simply press l
again. The alternative would be to
specify a window like l 70+20 (20 lines
starting in line 70) or l 70-100 (lines 70
through 100). The next executable line is
indicated by ==>.

Back to the Start
After scrolling down with l, typing a dot
sends the list display back to where the
script will continue. Typing r (for return)
tells the debugger to proceed running
the code until the current function ends
and it returns to the main program.
Then, it automatically stops:

list context return U

from LWP::Simple::head:

Perl Snapshot: DebuggingPROGRAMMING

72 ISSUE 54 MAY 2005 W W W . L I N U X - M A G A Z I N E . C O M

Command Meaning

Controlling program flow

n Run next line and stop
s Step into next line, stop in subroutine
r Finish current function, return and stop
R Return to start to re-run
Displaying variables

p Output value
x Dump (x \%hash)
Source navigation

l Scroll forwards
- Scroll backwards
v Display the code surrounding the current line
. Go back to current line
f Change to another source file
Dynamic navigation

c Line Run code to this line then stop
c Function Run code to this function and stop in the func-

tion
b Line Set breakpoint in line
b Function Set breakpoint in function
b Line/Func Breakpoint with condition
condition
a Line/Func Action Action point in line/function
w Line/Func code Watchpoint in line/function variable
< Command Set pre-prompt
L Display breakpoints, watchpoints, actions
B/A/W Delete breakpoints, watchpoints, actions

Table 1: Debugger Commands

01 #!/usr/bin/perl -w

02 ###########################

03 # wsrv - An URL's web server

04 # Mike Schilli, 2004

05 # (m@perlmeister.com)

06 ###########################

07 use LWP::Simple;

08 my $url = shift

09 or die "usage $0 url";

10 my (@fields) = head($url)

11 or die "Fetch failed";

12 print "Server: $fields[4]\n";

Listing 1: wsrv

ble piece of Perl programming wizardry
that is not exactly easy to understand.
Again, the debugger allows us to take a
peek if we type perl -d Makefile.PL. As
the warning points to line 606 in the
ExtUtils/MakeMaker.pm file as the
source of the error, we need to take a
look at the offending line.

The file command, f ExtUtils/Make-
Maker.pm, takes us there. We then need
to set a breakpoint in line 606 (b 606) to
have the debugger stop there later. The c
(for continue) command tells the debug-
ger to run the program until the next
breakpoint:

DB<2> c
606: push U

@{$self->{RESULT}},
$self->nicetextU
($self->$method(%a));

Instead of setting the breakpoint with b
606 and typing c to go there, c 606 would
have run the program and stopped in
line 606. But having a permanent break-
point will come in handy later.

The push command shown in the next
source code line above appears to
append the result of a call to a method to
an array. It might be interesting to find
out which method $method calls. p
$method can tell us that: It prints
post_initialize, which doesn’t really give
much more insight.

The Perl debugger executes the cur-
rent line when we type n – but no reac-
tion. n runs the line but we do not get
the warning we are expecting. It looks
like MakeMaker runs
the line multiple times
and issues an error
when we get to the
nth iteration.

Before we type c
(continue) to move on
to the next iteration
(stopping again at the
breakpoint in 606),
let’s define an action
point on this line:

DB<3> a U

606 printU
("$method\n");)

Using a, the line num-
ber, and some perl
code, the debugger

will now output the content of $method
every time it executes line 606, even if it
is running at full speed. Let’s carry on
with the continue command:

DB<4> c
606:push @

{$self->{RESULT}},
$self->nicetextU
($self->$method(%a));
platform_constants

As we have set a breakpoint in line 606,
the debugger stops there in the next
round. Because of the action point, it
prints the current value of $method, a
function named platform_constants.
Nothing familiar so far.

Looking for Warnings
But there is still no sign of the warning.
Let’s delete the breakpoint in line 606 by
typing B 606, and ask the debugger to
continue the program by typing c:

DB<4> B 606
DB<5> c
[...]
staticmake
test
ppd
WARNING: Setting ABSTRACT U

via file 'lib/somehowU
/anyway.pm' failed

After many rounds of output, it shows
that the ppd method causes the warning
to finally appear. Unfortunately, the last
action went further than we would have

liked, but never fear, typing R will allow
us to restart the program from scratch.
We can now set a new breakpoint for
ExtUtils/MakeMaker.pm, line 606, but
add a condition this time:

DB<5> f ExtUtils/MakeMaker.pm
DB<6> b 606 $method eq "ppd"
DB<7> c

The debugger will not stop at the break-
point in line 606 unless the $method
variable is set to “ppd”. The program
launches, stops, and the debugger again
shows us the code of line 606. The p
$method command confirms that the
condition we just specified really has
occurred.

We can now use the m command to
discover which the methods the $self ref-
erence in line 606 is capable of calling:

DB<8> m $self
[...]
via MM -> ExtUtils::MM -> U

ExtUtils::MM_Unix: U

post_initialize U

via MM-> ExtUtils::MM U

->ExtUtils::MM_Unix: postamble
viaMM -> ExtUtils::MM->U
ExtUtils::MM_Unix:ppd

The ppd method is defined in the Ext
Utils::MM_Unix module. To troubleshoot
this, we need to continue the program
with the c command, but stop when
ExtUtils::MM_Unix::ppd is triggered:

DB<9> c ExtUtils::MM_Unix::ppd
ExtUtils::MM_Unix::ppdU
(ExtUtils/MM_Unix.pm:U3322):
3322: my($self) = @_;

The debugger is now in the first line of
the ppd method, within the ExtUtils::
MM_Unix module. After typing l to take
a look around, we discover that ppd calls
the parse_abstract() method:

DB<10> l
3322==> my($self) = @_;
3323: if ($self->U
{ABSTRACT_FROM}){
3324: $self->{ABSTRACT}U
= $self->parse_abstract($self->U
{ABSTRACT_FROM})or

c parse_abstract says to continue and
stop in the first line of parse_abstract:

PROGRAMMINGPerl Snapshot: Debugging

73ISSUE 54 MAY 2005W W W . L I N U X - M A G A Z I N E . C O M

Figure 1: The DDD GUI integrates the Perl debugger.

scalar in Figure 1). You could do a simi-
lar thing using the pre-prompt command
< in the Perl debugger, but some people
prefer nicely formatted GUI displays.
Alternatives are the commercial IDE
Komodo GUI, and the free Ptkdb, which
is available from CPAN:

perl -MCPAN -e U

'install(Tk,Devel::ptkdb)'
perl -d:ptkdb wsrv U

http://microsoft.com

Figure 2 shows Ptkdb iterating through
the request method in the LWP::User
Agent package. The right-hand column
shows the attributes of the LWP:: User
Agent object, which was passed to the
method.

Tracing
Finally, just a little trick to display each
code line as it gets executed by a script.
The PERLDB_OPTS environment vari-
able controls the debugger’s tracing, just
add it to the command line before call-
ing the debugger:

PERLDB_OPTS="NonStop=1U
AutoTrace=1 frame=2 "U
perl -d Sprogram

The AutoTrace option
switches the debugger
to tracing mode, where
it outputs every line of
source code before exe-
cuting it. The NonStop
option tells the debug-
ger not to stop for user
input at the beginning
or end. frame=2 adds
entering and exiting
messages on entering
and exiting subroutines.
If you also need infor-
mation on any parame-

ters passed and on return values from
subroutines, you need to specify
frame=4. And finally, the Perl -S option
searches the entire $PATH for the script,
not just the current directory.

Each new Perl distribution comes with
a short introduction to the art of debug-
ging, perldoc perldebtut displays the
manual page. perldebug gives you more
detailed documentation, and if you
really want to get to terms with the nitty
gritty of the debugger, check out perl-
debguts.

Also, picking up a copy of [2] at your
local bookstore is highly recommended
if you want the ultimate reference to the
Perl debugger. ■

DB<11> c parse_abstract
ExtUtils::MM_Unix::U
parse_abstract(ExtUtilsU
/MM_Unix.pm:3045):
3045: my($self,$parsefile) = @_;

l+20 displays the next 20 lines and the
following regular expression which
Makefile.PL uses to fetch the abstract
from the module in the distribution: 057:
nextunless/^($package\s-\s)(.*)/;. Typ-
ing w allows us to set a watchpoint for
the $package variable to stop the pro-
gram after typing c whenever the value
of $package changes:

DB<2> w $package
DB<3> c
Watchpoint 0: package changed:
old value: ''
newvalue: 'Foo-Bar'

The parse_abstract() method looks for
the regular expression /^Foo::Bar\s-\s)
(.*)/. The module name needs to be at
the start of the line following a single
space and a dash. Since line 3 in listing 2
is indented, with the name following the
indent, the extraction fails.

Graphical User Interface
If you prefer a point & click style GUI,
you can link the Data Display Debugger
ddd with the Perl back-end. ddd ships
with all major Linux distributions. The
following calls wsrv in ddd to examine
the Microsoft homepage:

ddd -perl wsrv U

http://microsoft.com

Figure 1 shows the GUI in action. It facil-
itates the setting of breakpoints or
watching expressions (such as the $url

Perl Snapshot: DebuggingPROGRAMMING

74 ISSUE 54 MAY 2005 W W W . L I N U X - M A G A Z I N E . C O M

01 #############################

02 # Makefile.PL for Foo::Bar

03 #############################

04 use ExtUtils::MakeMaker;

05

06 WriteMakefile(

07 'NAME' => 'Foo::Bar',

08 'VERSION_FROM' =>

09 'lib/Foo/Bar.pm',

10 'PREREQ_PM' => {},

11 ($] >= 5.005

12 ? (

13 ABSTRACT_FROM =>

14 'lib/Foo/Bar.pm',

15 AUTHOR =>

16 'Ed Jones <ed@jones.com>'

17)

18 : ()

19),

20);

Listing 3: Makefile.PL

[1] Listings for this article: http://www.
linux-magazine.com/Magazine/
Downloads/54/Perl

[2] Richard Foley, “Perl Debugger Pocket
Reference”: O’Reilly 2004

[3] Michael Schilli, “Retire your Debug-
ger, log smartly with Log::Log4perl”:
http://www.perl.com/pub/a/2002/09/
11/log4perl.html

[4] Peter Scott and Ed Wright: “Perl
Debugged”, Addison-Wesley 2001

INFO

Figure 2: The graphical Ptkdb debugger is based on Perl/Tk

and is easy to install from CPAN.

01 =head1 NAME

02

03 Foo::Bar - Blah blah blah

04

05 =head1 SYNOPSIS

06

07 useFoo::Bar;

Listing 2: Sample Module

