
68

The Bricks game is a very simple exam-
ple, of course, but it will give you
enough background to experiment with
your own QCanvas programs if you’re
interested. This tutorial shows how you
can write an effective 2D game using
only the Qt libraries and very little “glue
code.”

Starting to Write the
Program
When starting to develop the program,
we begin at the application’s entry point,
usually contained in main.cpp. The for-
mat of main.cpp is exactly the same as
for any other Qt application, starting
with the inclusion of the QApplication
header file, qapplication.h. This is the
primary class for any Qt application that
allows us to use the Qt classes for the
program. The main function is very sim-
ple, only comprising code to load a Qt
widget as the main window. To start
with, a QApplication object is created
that will represent the application. This
is then followed by the main widget,
called View, which is a class that will be
written later. This widget will serve as

serve as the application’s entry point
• Define the main window for the game,

called the “View,” which will serve as
a parent for other widgets

• Define and implement the ball
• Implement collision detection (to

make the ball bounce)
• Define and implement the brick object
• Define and implement the paddle

Q
Canvas is a very versatile widget
that lets you add high perfor-
mance 2D graphics to a Qt appli-

cation. With features such as collision
detection and sprite support, QCanvas is
very much suited to 2D games. But
QCanvas has also been used in diverse
applications such as KTurtle, a logo
interpreter. In this article, I will show
you how to build a very simple game
using QCanvas components.

The example game I’ll discuss in this
article, which I call Bricks, consists of a
rectangular play area containing several
rectangular objects. The rectangular
objects are the bricks. A ball bounces
around in the play area. If the ball
strikes a brick, the brick disappears. A
paddle, operated by the user, demon-
strates how you can integrate user inter-
action into the game. To keep the game
as simple as possible, the ball cannot
leave the play area.

You can assemble this game very
quickly and easily using QCanvas com-
ponents. The steps for building this
game are as follows:
• Define the main function that will

The Qt toolkit from Trolltech sports features that appeal to any devel-

oper’s needs, but one of the most fascinating and powerful parts of

the toolkit is the QCanvas class. BY GEORGE WRIGHT

Building a Simple Game with Qt’s QCanvas

A DIFFERENT
CANVAS

Programming with QCanvasPROGRAMMING

68 ISSUE 52 MARCH 2005 W W W . L I N U X - M A G A Z I N E . C O M

01 #include <qapplication.h>
02
03 #include "view.h"
04
05 int main(int argc, char **argv)
06 {
07 QApplication a(argc, argv);
08
09 View *view = new View();
10
11 a.setMainWidget(view);
12 view->show();
13
14 return a.exec();
15 }

Listing 1: Calling
setMainWidget()

the main window for the application, on
which the canvas will be placed. As it is
the main window, QApplication’s set-
MainWidget() function is called to use
this as the main window (see Listing 1).

The parameters that have been passed
to the constructor for QApplication have
been set to the values that were passed
to the application upon execution, so
that Qt itself can handle them. In order
to display the widget, we must call the
show() function for View, otherwise the
object is created but nothing appears on
the screen. Finally, the return function
passes whether QApplication executed
correctly.

The View class
Now that main.cpp is complete, it is
time to progress to the main class for the
game, View. This is the main window
for the program, and it needs to be
inherited from QWidget to be set as the
main widget for QApplication. In this
case, it is probably best to make the
class inherit QMainWindow and base
the entire application on that class. This
is because QMainWindow has a very
useful setCentralWidget() function that
will allow us to add the main canvas
widget to it using the default layout, and
thus let it handle the layout and resize
events for the application.

First, the class needs to be defined in
view.h:

class View : public QMainWindow
{
public:
View(QWidget* parent = 0, U

const char *name = 0);
~View();

};

This is a definition for a class called
View that will inherit QMainWindow.
This is going to be used as the main win-
dow for the application, and so widgets
we create will use this as the parent. It is
to this window that the QCanvas wid-
gets for the game will be added. Now
that there is a class definition, we can
start writing the class constructor in
view.cpp:

View::View(QWidget* parent, U

const char *name)
: QMainWindow(parent, name)
{

}

View::~View()
{
}

This is the default constructor for the
View class that passes its arguments to
QMainWindow. However, an empty con-
structor is rather boring, as it doesn’t
actually do anything, so the next thing to
do is to create some widgets to display
on the window. QCanvas will need both
a QCanvas and a QCanvasView widget
so that the QCanvas classes can be used.
In order to add these to the window,
they will need to be declared in the class
definition as private underneath the pub-
lic class declarations:

private:
QCanvas *m_canvas;
QCanvasView *m_canvasView;

They can now be created in the con-
structor as class-wide objects and the
QCanvasView can be set to be the cen-
tral widget for the window. This will
give us a QCanvas workspace on which
2D objects can be added for the game.
To create the QCanvas and QCan-
vasView objects, we use the following
code in the constructor:

m_canvas = new QCanvas(this);
m_canvas->resize(400, 300);

m_canvasView = new QCanvasViewU
(m_canvas, this);
m_canvasView->show();

The first line creates a canvas named
m_canvas with the window as its parent;
the second line resizes the canvas to a
sensible size for the game. The third line
creates a QCanvasView so that the user
can view the canvas, setting the canvas
m_canvas as its QCanvas object. Now
that the main game objects have been
created, it is possible to add the QCan-
vasView to the window as the central
widget:

setCentralWidget(m_canvasView);

Before this will compile, you will need to
include the relevant header files for
these classes. All the QCanvas classes
are in qcanvas.h and the QMainWindow

class is defined in qmainwindow.h, so
we simply need the following at the top
of view.h:

#include <qcanvas.h>
#include <qmainwindow.h>

You will also need to tell view.cpp to
include view.h, as it contains its class
declaration:

#include "view.h"

This completes the View class for now.

69

PROGRAMMINGProgramming with QCanvas

69ISSUE 52 MARCH 2005W W W . L I N U X - M A G A Z I N E . C O M

QCanvas is included as standard with
the Qt distribution from Trolltech’s web-
site. For commercial uses, you will need
a commercial license. However, if you
only plan to write software released
under an appropriate free software
license, you will only need to download
the Qt Free Edition, which is licensed
under the GPL. At the time of writing,
the latest release of Qt Free Edition is
3.3.3. You can obtain Qt Free Edition
from ftp://ftp.trolltech.com/qt/source/
qt-x11-free-3.3.3.tar.bz2.

Installation of the package follows the
standard routine for source packages,
although Qt is strange in that it will
install the Qt libraries within its own
directory. Therefore you will need to
extract the tarball in a suitable directory
(such as /usr/lib/qt) and compile using
the following commands:

cd /usr/lib/qt
./configure -system-zlib
-qt-gif -system-libpng \
-system-libjpeg
-plugin-imgfmt-mng -thread
-no-stl \
-no-xinerama -no-g++-exceptions
make
Qt will then be installed in /usr/lib/qt. You
will need to set the environment vari-
able QTDIR to point to this directory.
There is no need to run make install, as
the Qt libraries are installed automati-
cally in the main source directory.

However, the chances are that your dis-
tribution already includes Qt as a pack-
age and so it is often better to simply
install the Qt development package from
your original installation media. This is
normally called qt-devel or similar. Your
distribution will have a tool to install this
package, such as Suse’s YaST utility.

Box 1: Obtaining QCanvas

add the following to the public section of
the class declaration:

void advance(int phase);

It is also sensible to declare a separate
function in which the collision detection
code is called, as well as a function to
perform the operations when a collision
has taken place:

void collisionDetect();
void collide(QCanvasItem *item);

And finally, there should also be another
function to update the velocity of the
object from the internal variables vx and
vy:

void updateVelocities();

Now that ball.h has been totally written,
it is time to proceed to ball.cpp. First we
need to tell ball.cpp to include ball.h and
then to declare the various functions
(see Listing 3).

Listing 3 is a very skeletal version of
ball.cpp with all the functions. The third
line tells QCanvasEllipse that it is an
ellipse of width and height 10 pixels, and
hence a circle. It also tells QCanvasEl-
lipse that the parent canvas is the canvas
that has been passed to the constructor.

QCanvasItem, from which QCanvasEl-
lipse is inherited, automatically paints
the item in white. However, this isn’t a
particularly good idea as the canvas
itself is white, hence making the ball
invisible. Because of this, we have to tell
the QCanvasEllipse explicitly to paint in
black in the class constructor. This also
makes it a filled circle as opposed to a
mere outline:

setBrush(Qt::black);

This is all that is needed in the class con-
structor. Everything else is implemented
in the advance(), collisionDetect(), col-
lide(), and updateVelocities() functions.
QCanvas will take care of calling
advance when necessary. As mentioned
earlier, there are two phases for move-
ment in the QCanvasItem classes, which
are represented by the int phase argu-
ment that is passed to the advance()
function. In phase 0 we need to check
for collisions and in phase 1 we need to
move the ball according to its defined
velocities:

The advance() function
if (phase == 0) {
collisionDetect();
} else {
moveBy(xVelocity(), U

yVelocity());
}

At the moment, the collisionDetect()
doesn’t actually do anything. However,
QCanvas provides built-in collision
detection functions that are very power-
ful. This is what the collisionDetect() is
going to use to detect a possible colli-
sion. In QCanvas, they consist of two
main functions: collisions() and col-
lidesWith(). The former function returns
a pointer to a QCanvasItemList of all the
objects currently on the canvas that the
current object will have collided with in
total after it has moved by its current
velocities. The latter function returns a
boolean value stating whether the object
has collided at that time with a certain
object. We can therefore iterate through
all the objects in the QCanvasItemList

Programming with QCanvasPROGRAMMING

70 ISSUE 52 MARCH 2005 W W W . L I N U X - M A G A Z I N E . C O M

01 #include <qcanvas.h>
02
03 class Ball : public

QCanvasEllipse
04 {
05 public:
06 Ball(QCanvas *canvas);
07 ~Ball();
08 private:
09 double vx;
10 double vy;
11 };

Listing 2: Declaring Ball

01 #include "ball.h"
02
03 Ball::Ball(QCanvas *canvas)
04 : QCanvasEllipse(10, 10,

canvas)
05 {
06 }
07
08 Ball::~Ball()
09 {
10 }
11
12 void Ball::advance(int phase)
13 {

14 }
15
16 void Ball::collisionDetect()
17 {
18 }
19
20 void Ball::collide(QCanvasItem

*item)
21 {
22 }
23
24 void Ball::updateVelocities()
25 {
26 }

Listing 3: ball.cpp

The Ball
Now that we have a class that defines
the actual window, we can start writing
the class that controls the ball’s move-
ment. This class will inherit QCanvasEl-
lipse, as this is the QCanvasItem for cir-
cular and elliptical objects. Since this
will be a moving object, we will need to
use the system that QCanvas uses for
moving objects. QCanvas defines the
velocity as two components: the velocity
in the horizontal direction (xVelocity)
and the velocity in the vertical direction
(yVelocity). Combined, these compo-
nents can create a velocity in any direc-
tion required.

To declare the ball class, I’ll use a
short class declaration in ball.h that tells
the class to inherit QCanvasEllipse (see
Listing 2).

The two variables declared in the pri-
vate section of the declaration are values
to represent the x and y velocities of the
ball. The functions that modify the
velocity of the ball will make adjust-
ments to these variables and then set the
actual velocity afterwards. This will also
keep an internal record of the current
velocity. QCanvas uses two phases in the
movement of an object. The first phase
is phase 0, where the object should not
move but instead performs checks
around the canvas object to see whether
any special cases (such as a collision)
that will affect the velocity need to be
applied. The second is phase 1, which
tells the object to simply move by its
velocity values (where gravity and drag
can be applied if necessary). These
phases are implemented in the
advance() function, and so the Ball class
needs to reimplement this to allow it to
perform custom operations in the case of
a collision. To overload the function, we

returned by collisions() and test them for
a current collision using collidesWith()
(see Listing 4).

The first two lines declare two dou-
bles, which will be the new x and new y
positions of the ball after the velocities
have been applied. The code then pro-
ceeds to set the internal vx and vy values
to the current x and y velocities of the
ball. The two if statements do a check
on the future position of the ball to see if
it will be off the canvas altogether and
reverse the velocity in the relevant direc-
tion if necessary. For example, if the ball
will be off the canvas on the right hand
side, it will reverse the velocity of the
ball so that it will start moving from
right to left instead of from left to right.

The updateVelocities() function simply
assigns the actual velocity of the ball to
the variables vx and vy using QCanvas’
setVelocity() function. The function
needs to only contain:

setVelocity(vx, vy);

Collision Detection
The next part is the interesting part, as
this is the internal QCanvas collision
detection in action. First, a QCanva-
sItemList is created of all the canvas
items that the ball could collide with.
This is obtained through the collisions()
function, which takes a boolean value as
an argument. If the boolean value is set
to false, then the collision detection isn’t
particularly accurate. On the other hand,
if it is set to true, then QCanvas will per-
form accurate collision detection.

Now that we have a QCanvasItemList
of all the possible collision candidates, it

is possible to iterate through them using
a QCanvasItemList::iterator and check
each item individually for a collision
using the function collidesWith(). This,
again, takes a boolean argument, which
chooses between accurate and inaccu-
rate collision detection. This will then
provide a pointer to the item that the
ball has collided with, but with no indi-
cation of what the object is, so the col-
lide() function is called.

Bricks
Although we now have a ball, it’s not
much use having just a ball and nothing
for it to collide with. So now it is time to
declare a new class in brick.h inherited
from QCanvasRectangle, which will be
the bricks that the ball will collide with
and “break” (see Listing 5).

Listing 5 declares a class of name
Brick, which inherits QCanvasRectangle.
The constructor has two extra integer
values, as they define the x and y coordi-
nates of placement. The constructor and
functions should be in brick.cpp. This is
a very simple class because all it will do
is create a rectangle of fixed size (see
Listing 6).

Identify Yourself!
Each and every QCanvasItem has a
unique identification number, called the
rtti value. Classes that you have derived
from any of the QCanvas objects should
return their own unique rtti values
through re-implementing the rtti() func-
tion. The rtti values for the standard
QCanvas items are defined in the enu-
merated type QCanvasItem::RttiValues
(see Box 2: RttiValues).

In order to get the rtti value for an
object, you need to call the object’s rtti()
function, which will return an integer of
the rtti value. For this application, it is
best to define the rtti value for the Ball
object (and any other objects) in a sepa-
rate header file, rtti.h. Putting the rtti
values in a header file makes it easier to
add custom objects, such as a paddle.
You just need to include this header file
in each file that uses the rtti value:

enum Rtti {
Rtti_Ball = 1001,
Rtti_Brick = 1002
};

This will allow the ball to return
Rtti_Ball as its rtti value. We can declare
the prototype for the rtti() function in
the public part of ball.h:

virtual int rtti() const;

And then implement the function in the
source file:

int Ball::rtti() const
{
return Rtti_Ball;
}

PROGRAMMINGProgramming with QCanvas

71ISSUE 52 MARCH 2005W W W . L I N U X - M A G A Z I N E . C O M

01 double nx = x() + xVelocity();
02 double ny = y() + yVelocity();
03
04 vx = xVelocity();
05 vy = yVelocity();
06
07 if ((nx - (width() / 2)) < 0

|| (nx + (width() / 2)) >
canvas()->width())

08 vx = -vx;
09 if ((ny - (height() / 2)) < 0

|| (ny + (height() / 2)) >
canvas()->height())

10 vy = -vy;
11
12 // Check for collisions

13 QCanvasItemList colList =
collisions(true);

14
15 for (QCanvasItemList::Iterator

it = colList.begin(); it !=
colList.end(); ++it) {

16 QCanvasItem *check = *it;
17
18 if ((check->collidesWith

(this))) {
19 collide(check);
20 }
21 }
22
23 updateVelocities();

Listing 4: Testing for Collisions

01 #include <qcanvas.h>
02
03 class Brick : public

QCanvasRectangle
04 {
05 public:
06 Brick(int x, int y, QCanvas

*canvas);
07 ~Brick();
08 };

Listing 5: Declaring Brick

01 #include "brick.h"
02
03 Brick::Brick(int x, int y,

QCanvas *canvas)
04 : QCanvasRectangle (x, y, 30,

10, canvas)
05 {
06
07 }
08
09 Brick::~Brick()
10 {
11 }

Listing 6: Brick Constructor

ing to the current velocities, will cause a
collision), it is necessary to first move
the object so that it has actually collided
and doesn’t make the ball look as
though it has bounced before actually
colliding with the brick. Then the verti-
cal velocity is reversed by assigning vy to
be the negative of the current vertical
velocity, and the velocities are updated
using the updateVelocities() function.
Finally, the brick is deleted so that it dis-
appears, as it has been “broken” by the
colliding ball.

However, no bricks have actually been
created yet in the view class constructor,
which means that nothing much is going
to happen. We will need a dynamic array
so that the program can create any num-
ber of bricks on the canvas. For this, the
QValueVector class is used. First, it is
necessary to include the header file for
QValueVector, as well as for the Brick
and Ball classes, in view.h:

#include <qvaluevector.h>
#include "ball.h"
#include "brick.h"

Then a few class-wide declarations in
the private section are needed for the
ball, the bricks, and the brick arrays:

typedef QValueVector<Brick*> U

BrickArray;
BrickArray *m_bricks;
Ball *m_ball;

This code defines an array of Brick
objects called BrickArray and then cre-
ates a pointer of type BrickArray called
m_bricks. A Ball pointer is created
named m_ball, which is the bouncing
ball in the program.

Another function called generate-
Table() is required for creating the bricks
on the canvas. The generateTable() func-
tion will create a line of bricks at the top
of the game window. This function
should be defined in the public declara-
tion section:

void generateTable();

Then the code to create the bricks can be
placed in generateTable() (see Listing 7),
which will be called from the class con-
structor.

The first line creates a new array of
bricks, through which the bricks will be

created. The two integers define where
the bricks should start being created
from, as the function will simply create
an arbitrary number of bricks (specified
by the variable numOfBricks) from left
to right starting at the initial value of
xPos. The loop creates all the bricks
required, changing the horizontal posi-
tion of the bricks so that they are created
in a line instead of on top of each other.
The push_back function adds the newly
created Brick object to the end of the
array, and the last line of the loop calls
the show() function for the newly added
brick so that it is visible on the canvas.

This function needs to be called from
the class constructor, View(), and the
ball needs to be created and have its
velocities assigned so that it can move
around:

generateTable();
m_ball = new Ball(m_canvas);
m_ball->move(250, 50);
m_ball->setXVelocity(1);
m_ball->setYVelocity(-2);
m_ball->show();

This generates the bricks and creates a
Ball object at x position 250 and y posi-
tion 50 on the canvas. It then sets the
ball’s horizontal velocity to 1 pixel per
frame and its vertical velocity to -2 pixels
per frame, and calls its show() function.
In order to make the object move,
though, QCanvas’ setAdvancePeriod()
function will have to be called to set
how long a frame is. A sensible time for
this is 20ms:

m_canvas->setAdvancePeriod(20);

The simplest way to compile the pro-
gram is to use Trolltech’s qmake utility,

You must take the same approach with
the Brick class, with the same prototype
as for Ball in brick.h. In brick.cpp, things
are slightly different:

int Brick::rtti() const
{
return Rtti_Brick;
}

Before this can work, however, the rtti.h
header file needs to be included in the
brick.cpp and ball.cpp source files:

#include "rtti.h"

A Few More Collisions
Identifying objects by their rtti numbers
works very nicely with collision detec-
tion, so that we can perform different
operations on the ball depending on
what type of object the ball collides
with. This is implemented in the col-
lide() function:

void Ball::collideU
(QCanvasItem *item)
{
if (item->rtti() == U

Rtti_Brick) {
moveBy(0, vy);
vy = -yVelocity();
updateVelocities();
delete item;
}
}

First, the function needs to check what
type of object this is, so the if statement
checks whether the value returned by
the object’s rtti() function matches the
rtti value assigned with a brick and exe-
cutes the following code conditionally.
Because the collision detection will
return a collision before the ball has
actually collided (in fact, it will return a
collision if the next movement, accord-

Programming with QCanvasPROGRAMMING

72 ISSUE 52 MARCH 2005 W W W . L I N U X - M A G A Z I N E . C O M

01 QCanvasItem::Rtti_Item
02 QCanvasItem::Rtti_Ellipse
03 QCanvasItem::Rtti_Line
04 QCanvasItem::Rtti_Polygon
05 QCanvasItem::Rtti_PolygonalItem
06 QCanvasItem::Rtti_Rectangle
07 QCanvasItem::Rtti_Spline
08 QCanvasItem::Rtti_Sprite
09 QCanvasItem::Rtti_Text

Box 2: Rtti Values

01 void View::generateTable()
02 {
03 m_bricks = new BrickArray(1);
04 int xPos = 1, yPos = 1;
05 int numOfBricks = 10;
06 for (int i = 0; i <

numOfBricks; ++i) {
07 xPos = (i * 30) + 1;
08 m_bricks->push_back(new

Brick (xPos, yPos, m_canvas));
09 m_bricks->last()->show();
10 }
11 }

Listing 7: generateTable()

which will automatically generate the
makefiles. Its file format is very simple
and a qmake file is designated by the file
extension .pro. Listing 8 shows a qmake
file for this game.

All the .cpp files in the program are
listed in the SOURCES list, all the .h files
in the HEADERS list and the CONFIG line
is fixed as shown. Then all that remains
is to run qmake in the directory contain-
ing all these files, and qmake will gener-
ate the Makefile:

$ qmake

The program can now be compiled using
GNU make.

$ make

And executed via the executable name,
bricks:

$./bricks

Hopefully, if everything has been done
properly, you will see a small black ball
bouncing around with 10 rectangles at
the top of the window. When the ball
collides with these rectangles, it should
change direction and the rectangle will
disappear. Figure 1 shows a screenshot
of this scene.

Paddling
A bouncing ball smashing bricks up isn’t
a particularly fun thing for a user to
watch, so it is time to write another class
to represent a paddle that the user can
control to stop the ball from falling off
the bottom of the screen. The following
class declaration needs to be written in
paddle.h:

#include <qcanvas.h>

class Paddle : public U

QCanvasRectangle
{
public:
Paddle(QCanvas *canvas);
~Paddle();
virtual int rtti() const;

};

The class constructor for this is very
simple. In keeping with the trend, this
will be in paddle.cpp. All that is required
is to set the brush that will paint the
paddle so that it is a filled rectangle as
opposed to simply an outline and to

PROGRAMMINGProgramming with QCanvas

Figure 1: We have a bouncing ball!

01 SOURCES = main.cpp ball.cpp
view.cpp brick.cpp

02 HEADERS = ball.h view.h
brick.h rtti.h

03 CONFIG += qt warn_on release

Listing 8: bricks.pro

SELLING OUT FAST!

For more information see:
www.linux-magazine.com/Backissues

73ISSUE 52 MARCH 2005W W W . L I N U X - M A G A Z I N E . C O M

closing brace on the first if statement:

else if (item->rtti() == U

Rtti_Paddle) {
moveBy(0, vy);
vy = -yVelocity();
updateVelocities();

}

This simply sets the variable vy to the
negative of the current y velocity, then
calls updateVelocities() to set the veloc-
ity of the ball, hence reversing its direc-
tion in the vertical plane. For the paddle
to exist, though, it needs to be created in
the View class. So first we need to
include paddle.h in view.h:

#include "paddle.h"

Then we need to declare the variable in
the private section of the View class’s
declaration:

Paddle *m_paddle;

And we can then create the paddle in the
View constructor, setting its position and
calling its show() function:

m_paddle = new Paddle(m_canvas);
m_paddle->move(50, 250);
m_paddle->show();

Keyboard Control
In order to give the user keyboard con-
trol, Qt provides a function called key-
PressEvent(), which is called automati-
cally by Qt every time a key is pressed
when the widget has focus. A QKeyEvent

is passed to the function that represents
the key that the user has pressed. There-
fore, in order to perform an action, such
as to move the paddle left when the left
key is pressed, all that is needed is to
reimplement the keyPressEvent() func-
tion and perform the necessary actions.
First, the prototype for the function
needs to be declared in the public sec-
tion of the class declaration of the View
class:

void keyPressEventU
(QKeyEvent *keyEvent);

And we can use a switch statement
inside the function to execute the neces-
sary code, depending on which key the
player has pressed (see Listing 10).

In this case, the switch statement
checks whether the key pressed by the
user is either the left key or the right key
of the four directional keys. If the left
key has been pressed, it will move the
paddle 5 pixels to the left. If the right key
has been pressed, it will move it 5 pixels
to the right.

All Done!
So that’s the end of the Brick game. Fig-
ure 2 shows a screenshot of the com-
pleted game. Hopefully, this tutorial
demonstrates how flexible and simple
QCanvas is for 2D graphics. You don’t
have to be an expert to build your own
game in QCanvas. ■

reimplement the rtti() function to return
Rtti_Paddle (see Listing 9).

However, we need a new rtti value for
the paddle, Rtti_Paddle, which is
returned by the rtti() function:

int Paddle::rtti() const
{
return Rtti_Paddle;
}

So, it is necessary to add this rtti to the
enumerated type in rtti.h:

enum Rtti {
Rtti_Ball = 1001,
Rtti_Brick = 1002,
Rtti_Paddle = 1003

};

As a new source and header file has
been added to the project, these need to
be added to the SOURCES and HEADERS
lines in the qmake file so that the pro-
gram will compile:

SOURCES = main.cpp ball.cpp U

view.cpp brick.cpp paddle.cpp
HEADERS = ball.h view.h U

brick.h rtti.h paddle.h

And qmake run again:

$ qmake

All that remains is to make the paddle
respond to key presses and to add it to
the collide() function to reverse the verti-
cal velocity of the ball when a collision
with the paddle takes place. To do so, we
add the following to collide() after the

Programming with QCanvasPROGRAMMING

74 ISSUE 52 MARCH 2005 W W W . L I N U X - M A G A Z I N E . C O M

[1] Trolltech: http://www.trolltech.com

[2] QCanvas API Documentation: http://
doc.trolltech.com/3.3/canvas.html

[3] The complete source code to bricks:
http://www.gwright.org.uk/files/
LinuxMag/bricks.tar.bz2

INFO

01 void
View::keyPressEvent(QKeyEvent
*keyEvent)

02 {
03 switch (keyEvent->key()) {
04 case Key_Left:
05 m_paddle->moveBy(-5, 0);
06 break;
07 case Key_Right:
08 m_paddle->moveBy(5, 0);
09 break;
10 default:
11 break;
12 }
13 }

Listing 10:
Keyboard Control

01 #include "paddle.h"
02 #include "rtti.h"
03
04 Paddle::Paddle (QCanvas

*canvas)
05 : QCanvasRectangle (1, 1, 50,

5, canvas)
06 {
07 setBrush(Qt::black);
08 }
09
10 Paddle::~Paddle()
11 {
12 }

Listing 9: Paddle
Constructor

Figure 2: The Bricks game with paddle, bricks, and
ball.

