=

Perl: Internet Video Organizer =~ PROGRAMMING

-
“In er!t video organizer in Perl

COUCH POTATO

Video files are ready for download, but your storage space is limited,

and, if you're like most people, you may have a hard time letting go of

past favorites. You need a higher authority to decide when it's time to

fter filling up my disk with doz-
A ens of freely available videos in

the course of a couple of weeks,
I started to look around for a manage-
ment software. Ideally, it would let me
choose between available recordings,
and, if space got tight, automatically and
gracefully remove the old stuff that I
hadn’t watched for weeks. In other
words: I needed a Tivo.

This digital video recorder (DVR) by
the manufacturer of the same name and
its clones are icons of US TV recording
culture - ask any kid. The Tivo boxes
have an easy to use interface that lets
users record TV programs on disk for
viewing some time later and skipping
unwanted commercials. And instead of
randomly turning on the TV and surfing
channels, you select from a stack of pro-
grams previously recorded by the Tivo.

trim down your collection. BY MICHAEL SCHILLI

ple of days, unless you say Save until I
delete. The Tivo distinguishes between
recordings that are due for deletion
shortly (exclamation mark), have a cou-
ple of days to go (no highlighting), or
just have one day (yellow dot), as well
as recordings that it will keep forever
(green dot).

With this “time-shifting” technology,
viewers cut themselves loose from the
broadcasting schedule and watch TV
when they have the time.

Figure 1 shows
a selection of pro-
grams that my
five-year-old (but
pimped) Tivo re- i iow r
corded over the
course of several
days. Because the
box might record

Tha Wedding Diiito Is L

more than you @ Uiseds Ramils it M 5t HBO
have time to o @ T imocsios i HBG
watch and due to + l:""_, Tha Oifica | T _-__ _-_ ™o A sl
disk space restric- H ®
tions, the Tivo de- :
letes older pro-
grams automati-
cally after a cou-

pir Cips TR |

Figure 1: A selection of TV programs recorded on the Tivo digital
video recorder.

WWW.LINUX-MAGAZINE.COM

ISSUE 70 SEPTEMBER 2006 71

PROGRAMMING Perl: Internet Video Organizer

The tv script that we will be looking at certain threshold - the default is 20 GB. the cursor is in the OK box tells tv to de-
today simulates a simple version of this If so, and if the files are not tagged for lete the file from disk, and refreshes the
user interface. Instead of using well- keeping, it keeps on removing the oldest list box.
known graphical toolkits such as Perl/ files from disk without prompting the To tag a file with an asterisk, that is to
Tk, GTK, or Wx widgets, the script uses user to confirm until the total size drops protect the file against automatic dele-
the Curses::UI widget collection, which below the threshold. tion by the hard disk janitor, users sim-
is based on the Curses library. Curses::Ul ply select a list box entry, and press the
creates typical GUI elements, such as dia- ON Keyboards: Perl [*] key.
logs, menus, or list boxes, simply in an To navigate the list box that tv displays To play a program using Mplayer,
ASCII terminal. The 80s look is back - on the screen, users can either press users simply select a file and press
pure nostalgia! the arrow keys (including [Page-Up]/ [Enter]. The versatile Mplayer, which is

The script expects to find the video [Down]), or the keyboard shortcuts fa- available from from the Mplayer homep-
files in a pre-configured directory, which ~ miliar to Vi users: [K] (to go up), and [J] age at[2], will play any popular video
it scans every 60 seconds. If it discovers (to go down). Users can press the [D] format.

a change, the script refreshes its inter- (for delete) key to manually remove a Pressing [Q] quits Mplayer. Mplayer
face. It also continually checks if the file. When the confirm prompt appears also has keyboard shortcuts for actions
total size of the video files is above a (Figure 3), pressing Y or [Enter] while such as fast-forward and rewind. To
. Lstingtiv

001 #!/usr/bin/perl -w 035 -paddingspaces 1 069

002 {HHHHHHHHHHHHHHHHHHHHHHHHHHEHHE 036 -fg white -bg blue 070 {HHHHHHHHHHHHHHHHHHHHHHHHHHHHE

003 # tv - manage video files 037), -text => top_text() 071 sub ttl1_icon {

004 HHHHHHHHHHHHHHHHHHHHHHHHHHHHE 038); 072 HHHHHHHHHHHHHHHHHHHHHHHHHHHHF

005 use strict; 039 073 my ($ttl) = @_;

006 use Videodir; 040 my $LBOX = $WIN->add(074 return $tt1 <0 2 "I

007 use Curses::UI::POE; 041 qw(1b Listbox 075 : $ttl <=5 7 " "

008 use Curses; 042 -padtop 1 -padbottom 1 076 g Pl

009 043 -border 1), 077 }

010 my $MPLAYER = 044 -onchange => \&selected, 078

011 "/usr/bin/mplayer"; 045 -onselchange => \&changed, 079 THHHHHHHHHHHHHHHHHHEHHHEHEHEHE

012 046); 080 sub changed {

013 my $V = Videodir->new(); 047 081 {HHHHHHHHHHHHHHHHHHHHHHHHHHHHE

014 048 my $BOTTOM = $WIN->add(082 $BOTTOM->text(

015 my $CUI = 049 qw(bottom Label 083 bottom_text());

016 Curses::Ul::POE->new(050 -y -1 -width -1 084 }

017 -color_support => 1, 051 -paddingspaces 1 085

018 inline_states => { 052 -fg white -bg blue 086 HHHHHHHHHHHHHHHHHHHHHHHHHHHHF

019 _start => sub { 053), -text => bottom_text(), 087 sub selected {

020 $poe_kernel->delay(054); 088 FHHHHHHHHHEHHHHHHHHHEHHHHHHHH!

021 'wake_up', 60); 055 089 my $cmd = "$MPLAYER "

022 ’, 056 $CUI->set_binding(090 . active_item()->{path}

023 wake_up => 057 sub { selected($LBOX); }, 091 . ">/dev/null 2>&1";

024 \&wake_up_handler, 058 KEY_ENTER() 092 “s$cmd & ;

025 } 059); 093 }

026); 060 $CUI->set_binding(094

027 061 sub { exit 0; }, "q"); 095 HHHHHHHHHHHHHHHHHHHHHHHHHHHHE

028 my $WIN = 062 $CUI->set_binding(096 sub bottom_text {

029 $CUI->add(063 \&delete_confirm, "d"); 097 {HHHHHHHHHHHHHHHHHHHEHEHHHEHHE

030 qgw(win_id Window)); 064 $CUI->set_binding(\&keep, 098 my $item = active_item();

031 065 "*"); 099

032 my $TOP = $WIN->add(066 100 4 Work around PGdown bug

033 qw(top Label 067 redraw(); # initial draw 101 return unless defined $item;

034 -y 0 -width -1 068 $CUI->mainloop; 102

72 ISSUE 70 SEPTEMBER 2006 WWW.LINUX-MAGAZINE.COM

quit the tv program, again just press the
[Q] key.

Multitasking for Multimedia
Listing 1 first includes the Curses::UL::
POE and Curses modules, both of which
are available from CPAN. Curses::UI in-
cludes a selection of handy Curses wid-
gets to help with all sorts of different UI
needs.

To make the script multitasking-
capable, which it needs to be in order
to perform periodic refreshing for exam-
ple, Curses::UIL::POE defines a derivative
class which integrates the GUI in the
POE frameworks event loop. You may re-
call me using POE previously in our reg-

103 my $str = sprintf

104 "%d/%d | %.1f days"”

105 . "old | %s GB | TTL %s",
106 $LBOX->get_active_id() +

107 1,

108 scalar @{ $V->{items} },

109 $item->{age},

110 $item->{size},

111 $item->{ttl};

112

113 return $str;

114 }

115

116 HHHHHHHHHHHHHHHHHHHHHHEHHEEE
117 sub wake_up_handler {

118 HHHHHHHHHHHHHHHHHHHHHHHHHEHEE
119 $V->rescan()

120 ; #f Get newly added files
121 redraw();

122

123 redraw() if $V->shrink();
124

125 4 Re-enable timer

126 $poe_kernel->delay(

127 ‘'wake_up', 60);

128 }

129

130 HHHHHHHHHHHHHHHHHHHHHHHHHHEH
131 sub top_text {

132 HHHHHHHHHHHHHHHHHHHHHHHHHEHEE
133 return "tv1.0 | "

134 . $V->{total_size}

135 . " GB total | "

136 . "$V->{max_gigs} GB max";

ular Perl column, mainly to add coopera-
tive multitasking support to allow GUIs
to run smoothly, although the control-
ling program is doing something strenu-
ous.

The constructor called in Line 16 uses
the color_support option to specify that
the new terminal GUI supports ANSI col-
ors. The inline_states parameter defines
the start status, _start; the POE kernel
automatically enters this state, shortly
after launching.

When it gets there, the delay() method
ensures that the POE kernel enters the
wake_up state after exactly 60 seconds,
and runs the wake_up_handler function
defined in Line 117.

137 '}
138

139 AL E AL AEE AL AL SE LIS E LA E L dL
1FIFIFIFTEIFIFIFTFEIFIFTF R IR TR AP IR TR TF 1 P TR 17 TF1F1F

140 sub delete_confirm {

141 AL AL AL AL AL E L AL AL LA AL L LA E L L
1EFIFIFTFIFIFIFTFIEIFIRTE 1R IR TR P IR TR TE 1 IR TE1E1F1F1F

142 my $item = active_item();
143

144 my $yes = $CUI->dialog(

145 -title =>

146 "Confirmation required",
147 -buttons =>

148 ['yes', 'no'],

149 -message =>

150 "Are you sure you want "
151 . "to delete "

152 . "Sitem->{file}?",

153 qw(-tbg white -tfg red
154 -bg white -fg red

155 -bbg white -bfg red)
156);

157

158 if ($yes) {

159 $V->remove($item->{file});
160 redraw();

161 }

162 }

163

164 AL LA AL AL AL E LI E AL dL
1EIFIFIFTFIFIFIFIFE IR IF TR R IR TR AP IR TR TF 1P TE1E1F1F1F

165 sub redraw {

166 F T M]
AFIFIFTEIFIFIFTFIEIFIRTE IR IR TF AP IR TR IR TR TETF1FF

167 $LBOX->{ -values } =
168 [map { $_->{file} }
169 @ $V->{items} } 1;
170

WWW.LINUX-MAGAZINE.COM

Perl: Internet Video Organizer =~ PROGRAMMING

This is where the Videodir (see below)
module’s rescan() method scans the
video directory, and remembers the
names of all the files, along with their
last modification timestamps. A small
database resides inside the video direc-
tory in form of a YAML file named .meta:
its entries specify how long the user in-
tends to keep the video clips. Videodir::
rescan() reads this information and
stores it in an internal data structure
which the function redraw() then ac-
cesses to update the list box in the GUI.

Weeding

The Videodir::shrink() method launched
in Line 123 shrinks the video directory

Listing 1: tv (continued)

171 $LBOX->{-Tabels} = {

172 map {

173 $ ->{file} =>

174 ttl_icon($_->{ttl1})
175 .S {filet”

176 b @ $V->{items} }
177)

178

179 $LBOX->draw(l);

180 $TOP->text(top_text());
181 $BOTTOM->text(

182 bottom_text());

183 }

184

185 T | | W]
1FFIEIFTEIrF PR R r e E r 1k IrirrarIr e e arar e irarr

186 sub keep {

187 AL AL AL AL AL LI E LA JEJL
1FIFIFIFTEIFIFAF IR TRTrAF PR IE PP TR TF 1P IFTE TR IR TR 17 1F

188 my $it = active_item();

189 $V->{meta}->{ $it->{file} }
190 ->{keep} = 10000;

191 $V->meta_save();

192 $V->rescan();

193 redraw();

194 }

195

196 T | W W]
1FIEIEIFTEIrF PR R ArIF R Ir1rIrIrr e e e e Iririrr

197 sub active_item {

198 AL AL AL AL AL E AL LI JL
EAFTEIFEIFTIFTFF IR IR IR 1F R IF 1R IF IR TF PR TE1F1F 1711

199 return $V->{items}

200 ->[$LBOX->get_active_id()
201 IE

202 }

ISSUE 70 SEPTEMBER 2006 73

by deleting older videos if their total size
exceeds a certain threshold. All the
wake_up_handler has to do then is to
call delay() to tell the POE kernel to
wake it up again in 60 seconds. The
function then quits and hands control
back to the POE kernel which then goes
back to handling user input and refresh-
ing the GUI.

Letter Boxes
tv starts building the ASCII GUI in Line
28. The add() method adds a new Win-
dow type widget which takes up the
whole of the current terminal window.
Then three widgets are added to the
Window object. Working from the top
downward, add() inserts the top info bar
$TOP, the list box $LBOX, and the lower
bar $BOTTOM into the GUI. (See the
script in action in Figure 2.)

The first two add() parameters set an
alias for the new widget and specify the

Listing 2: Videodir.pm

001 AL AL AL LI
TEAEEAr I ar e e e e e i ar e i e

002 package Videodir;

003 AL AL AL E LA E LI IE
1EAFIFIFTFIFIFIFTFIFIFIFTF1E IR IF TR IR P IR TR 1P P TR TFTF 1711

004 use strict;

005 use warnings;

006 use YAML

007 gw(LoadFile DumpFile);
008 use File::Basename;

009

010 AL AL AL L LA IE LA E LA JE L dEILJE
1AFIFIFTFIFIFIFTF IR IR IR 1F IR IR TF 1R IF IR TR 1P 1F TR 1E1F1F 1

011 sub new {

012 T | N W M
TEAEEAEIE e e ar e e e e ir e e e e e e i ir e e irrir

013 my ($class, %options) = @_;
014

015 my $self = {

016 dir => "$ENV{HOME}/tv",
017 meta_file => ".meta",
018 keep_default => 5,

019 meta => {},

=> 20,

020 max_gigs
021 %options
022 };

023

024 $self->{meta_path} =
025 $self->{dir} . "/" .
026 $self->{meta_file};
027

028 bless $self, $class;
029 $self->rescan();

74 ISSUE 70 SEPTEMBER 2006

widget type. The two bars are of the
Curses::UI::Label type; the code for the
list box with the video entries is defined
in Curses::UI::Listbox. The add() meth-
od’s -y option specifies the vertical posi-
tion of the widget with I representing
the topmost row, and -1 the bottom row.
-bg specifies the background color, and
-fg the font color.

-width -1 spreads the info bar over the
full width of the terminal. -padding-
spaces pads out the blue bars to the end
of the line, even if the label entry is
shorter.

Normally, these parameters would be
passed in as Key = > Value pairs, but to
avoid bloating the listings, I opted for a
space-saving notation that uses qu(...)
to separate options in the string at word
boundaries and pass these options on as
a list.

-border 1 draws a thin blue frame
around the list box. Rather than having

030 return $self;
031 }
032

033 LA ALAL LA E AL AL AL E LI]L
1FFIFIFTFAF IR IR TR IF IR IE T IR R TR R IFTF TR IR IF TR TR 1R 1F

034 sub rescan {

035 JHHHHHHHEHHHHHHHHEEHHHHHHHEEEE
036 my ($self) =@_;

037

038 if (-f $self->{meta_path})
039 $self->{meta}l =

040 LoadFile(

041 $self->{meta_path});

042 |}

043

044 $self->{total_size} = 0;
045 my @items = ();

046

047 my $dir = $self->{dir};
048 for my $path (<$dir/*>) {
049

050 next unless -f $path;

051 my $file = basename $path;
052

053 $self->{meta}l->{$file}
054 ->{keep} =

055 $self->{keep_default}
056 unless

057 defined $self->{meta)
058 ->{$filel->{keep};

WWW.LINUX-MAGAZINE.COM

PROGRAMMING Perl: Internet Video Organizer

the frame overwrite the top and bottom
bars, the list box honors the -padtop 1
and -padbottom 1 options to leave the
necessary space.

The script processes two types of
list box events: -onselchange and -on-
change. The first type of list box event
occurs when a user presses an arrow
key to move the list box cursor up or
down. In this case, the list box event
calls the changed function defined in
Line 81, which in turn outputs the me-
tadata for the selected video file into
the GUI footer.

The footer gives the user information
such as which element this is, and how
many files there are in total (for example
1/74), how old the file is, how much
storage space the file occupies, and how
long it has to live, unless the user does
something about it. For example, TTL
4.3 tells the user that the time to live is
4.3 days. The file can be deleted any

059

060 my $size = -s $path;
061 $self->{total_size} +=
062 $size;

063

064 my $age =

065 age_in_days($path);
066

067 push @items,

068 {

069 file => $file,

070 path => $path,

071 age => $age,

072 size => gb($size),
073 ttl =>

074 $self->{metal->{$file}
075 ->{keep} - $age,

076 b

077 }

078

079 $self->{total_size} =

080 gb($self->{total_size});
081

082 # Delete outdated entries
083 for my $k (

084 keys %{ $self->{meta} })
085 {

086 delete $self->{meta}->{$k}
087 unless

time after this if storage space is getting
tight.

Indexed List Box

The $LBOX list box object’s get_active_
id() method detects the entry currently
selected in the list box; it returns the
index of the corresponding list element.
The Videodir.pm module has a data
structure that contains video metadata
in the same order that the list box will
display them later.

The second event the list box pro-
cesses is -onchange. The event is trig-
gered when a user presses [Enter] for
a selected entry, or when the user clicks
an entry with the mouse. This tells tv
that the user wants to view the video.
Line 92 calls Mplayer in the background
using backticks and &. This is important
because we want the GUI to keep on
accepting keyboard input rather than
freezing.

Listing 2: Videodir.pm (continued)

088 -f "$self->{dir)/$k";
089 }

090

091 $self->meta_save();

092

093 # Sort by descending by age
094 $self->{items} = [

095 sort {

096 $a->{age} <=> $b->{age}
097 } @items

098 1;

099

100 return $self->{items};

101 }

102

103 HHHHHHHHHHHHHHHHHHHHHHHHRA
104 sub gb {

105 LA AL AL AL SEE LI]L
1FFIFIFTFAEIFIF TR 1F IR TFIr 1 IR TR TR PR TFTF 1R IF 1R TR 1F 15

106 my ($val) = @_;

107 return sprintf "%.1f",
108 $val / (1024**3);
109 }

110

111 LA AL AL AL LA SE LI IL
1FFIFIFTFAFIFIF TR AP IR TFIE P IR TIR TR R TFTFTF IR IF 1R TR 1R 1F

112 sub remove {

113 LA AESE AL ALSE LA AL AL LA AL SE L L AEJEJE
FIFIFTFAFIFIRTRIE AR IE TR F IR TR TEF IR IETF T IR IFTF TR 1F1F

114 my ($self, $file) = @_;
115
116 my $path =

In addition to
the callback defi-
nition for the list
box, Line 56 spec-
ifies that pressing
[Enter] calls the

Perl: Internet Video Organizer =~ PROGRAMMING

kel E ot Tl N bl i

selected() func-
tion. The KEY _
ENTER() macro
is defined in the
Curses module,

B Ll Gestes Hiy Sk Crosa P,
= L dram Beewa Ldncnd

B T Baci o A oy, v

Ry, i L Compesment &
= Liech Tabh Dick Herdl .
1 Amblwe Fomwey Wdeaepg

1 ﬁﬁ I:—.:I.-I.i

=i

and references
the [Return] or
[Enter] key.
Thanks to the on-
change event han-
dler we defined
for the list box
earlier on, this would happen without
the explicit set_binding instruction - be-
cause an onchange event occurs when-
ever a list box entry is selected. But this
event would fail if a user selected the

asterisk *.

117 "$self->{dir}/$file";
118

119 if (-f $path) {

120 unlink $path

121 or die

122 "Cannot unlink $path";
123 }

124 $self->rescan();

125 }

126

127 F T | W W]
EIEEAE e e e ar e e e ar e e i ir e ar i i rr

128 sub age_in_days {

129 TR |) W M
1EIFIFIFTEIFIFIFTFIE IR IR TR R IR TR AP IR TRTF P TE 17 TF 17 1F

130 my ($file) = @_;

131

132 return (

133 sprintf "%.1f",

134 (time() - (stat $file)[9])
135 / 24 / 3600

136);

137 }

138

139 F T | W]
1EIEIEIFTrIEIFIFIF IR IRTr R IR TR AP 1P TR Ir 1 1P 1E1r1r 1711

140 sub shrink {

141 AL AL AL AL AL LA IE LIS E AL L dL
1EFIFIFTEIFIFIFTFIE IR IR TR 1F IR IR TR P IR TR PR 1E1F1FF

142 my ($self) =@_;
143
144 my $deleted = 0;
145

WWW.LINUX-MAGAZINE.COM

Figure 2: The Perl script tv uses Curses::Ul to create a Tivo-look-
alike GULI. Dick Hardt's OSCON 2005 talk on “Identity 2.0" is cer-
tainly worth keeping around forever, so | marked this item with an

same entry again after viewing the
video.

Lines 60 through 65 map more keys.
Users can press [Q] to quit watching;
this tells tv to quit via exit 0. The [D] key

146 my @doomed = reverse

147 grep { $_->{ttl}) <0}
148 @{ $self->{items} };

149

150 while ($self->{total_size} >
151 $self->{max_gigs})

152 |

153 Tlast unless @doomed;

154 my $item = shift @doomed;
155 $deleted++;

156 $self->remove(

157 $item->{file}l);

158 |}

159 return $deleted;

160 }

161

162 I | W]
WEEIEIeIr e ar e e e e e e e i e ar i irrar

163 sub meta_save {

164 AL AL AL AE LA ALIE LA E LA IEJL
EAFTFTETEAFTIFIFTFIFIFIFTF1F 1R IR 1R IF IR TF P IETF1F1F1F 11

165 my ($self) =@_;

166 DumpFile($self->{meta_path},
167 $self->{meta});

168 }

169

170 1;

ISSUE 70 SEPTEMBER 2006 75

PROGRAMMING Perl: Internet Video Organizer

of files, the space they
occupy on disk, or even
the selected entry can
change, redraw() also
redraws the header and

Rallwy On_Holls A jus .mov?

Fire you sure s went Lo deleis

T ¢ e

footer bars.

Video Fans of the
World Unite

L

The Videodir.pm module
in Listing 2 abstracts ac-
cess to video files. The

Figure 3: The delete dialog for a program pops up when a user
presses [D], prompting the user to confirm their choice.

calls delete_confirm() in Line 140 to de-
lete the selected video file, prompting
the user to confirm before doing so.
When a user types an asterisk (*), the
keep function is called and sets the TTL
for the file to 10000 days in the meta-da-
tabase to prevent it from being deleted.

The ttl_icon method in Line 71 helps
the GUI modify the display to reflect the
various TTLs for the videos. If a TTL is
less than zero, that is if the file is due for
deletion, an exclamation mark is dis-
played. Nothing is displayed for a TTL of
less than five days, and an asterisk in all
other cases. After all this preparatory
work, the GUI is now complete.

Line 68 triggers the the Curses::UI::
POE module’s mainloop which in turn
launches the POE kernel with its associ-
ated multitasking activities. A POE-only
application should never perform syn-
chronous hard disk access. However, the
fact that tv occasionally reads the Inode
data for the video files, is just about ac-
ceptable. The GUI might

video directory, which
defaults to ~ /tv, not only
contains all the video
files, but also a .meta file
that stores the TTL data in YAML format
(Figure 4). The keep key in .meta spe-
cifies the number of whole days a file
should be kept in the directory after cre-
ation.

The modify date stored for the file is
used as a timestamp. To set the time to
live for a file, the Videodir.pm module’s
age_in_days function first calculates the
difference between the current time and
the Unix mtime for the file in days. The
TTL is then the vector between the keep
value (in days) set in the metafile, and
the file age (Line 75). In Line 16 the new
constructor defines a few default values
for constants that can be overwritten
when called. For example, if you create a
Videodir object by saying new(max_gigs
= > 50), the disk space threshold is 50
GB rather than 20.

The rescan method in Line 34 reads
both the video directory (using the
$dir/* glob, which will not find .meta)
and the metafile, which rescan parses

stutter from time to time, - = R
. , = FTAML ;1.0
but it won t'freeze. Rt iy Wi
If something changes keep: 5
in the video directory, the Bill Gates Hit _Hith Cress Ple.spg:
wake_up_handler() will keep:

find out what within 60
seconds, when the Video-
dir.pm module’s rescan()
method is called in Line
119. It then refreshes the

Etech_Talk_Dick_Hardt .wev:
kesp: 1000

LCAL inualervaldasdunk .avi =
keep: 1000

OSCON_Heyrnote Tdentity?t Dick Hardb wey:
ku|p: 1000

module’s internal data R"'E!:ETJ'“"—HJ“‘ w2
structure. The data is Ruby_Dn_Ralils_Components .mov:
then handed on to the list keep: &
box by the redraw() func- VYolkawagen Commercial cmpd:
tion in Line 165. The list heep: &
i.1 Top

box’s draw() method re-

draws the graphical ele-
ments. As the number

76 ISSUE 70 SEPTEMBER 2006

Figure 4: The metadata in ~/tv/.meta are stored in YAML for-
mat and contain the TTL data for the video files.

WWW.LINUX-MAGAZINE.COM

using the YAML module’s LoadFile()

method. The method refreshes the inter-

nal data structure stored in the items key

to reflect the current state. Each element

in the items array is a pointer to a hash

that contains the values for the keys:

e file: filename

e path: absolute path

® age: age in days

e size: filesize in GBytes

e ttl: time to live in days before deletion
protection is revoked

The metafile automatically assigns a

keep value of five days to any new files it

finds (keep_default parameter). At the

end of the rescan, Videodir.pm calls

meta_save() to write the new keep val-

ues to the metafile. Before doing so,

Lines 83 through 89 remove the entries

for any files that have disappeared from

the disk since the last scan, in order to

update the metafile.

When the disk space threshold is
reached, the shrink() method keeps on
removing files that are due for deletion
until the total size drops below the
threshold value. To do this, grep filters
any entries with a ttl below zero. As
the entries in the array previously re-
ferenced by $self- > {items} are sorted
by date in descending order (the newest
files come first), reverse reverses the
order of the resulting list to sort the files
in order of due date. If the total file size
is below the threshold value, shrink()
returns 0 without doing anything. The
caller in the tv script checks the return
value, as it will only need to refresh the
list box display if some files have been
removed.

Installation Trick

With version 0.95 of the CPAN Curses::
UI module, the event loop chokes on
keyboard input, so you might like to
download the patched version [3]. You
need to install Videodir.pm in a directory
where tv will find it. Happy viewing. M

[1] Listings for this article: ftp:/www.
linux-magazin.de/pub/listings/
magazin/2006/08/Perl

[2] Mplayer homepage:
http://mplayerhg.hu

[3] Patched version of the Curses::UlI
module: http./perlmeister.com/errata/
Curses-UI-0.95-patch-ms1.tar.gz

