
52

The inventors of Micky Mouse and
Donald Duck had already set up
a number of real-life theme parks

by the time they decided to venture into
the virtual world of the Internet. In the
year 2000, programmers at the Disney
VR Studios started to create a software
application to help them develop their
3D online game, Toontown.

The result of this work is Panda3D [1],
a game engine that supports the Python
scripting language. In 2002, Disney pub-
lished the package under a free license
to make it easier for universities to con-
tribute to the project.

A game engine like Panda3D takes re-
petitive work, such as loading characters
and sounds, basic motion control, and
many other things, off a game develop-
er’s hands. The fact that these functions
are programmed in C++ guarantees the
kind of performance you need for a
smooth look and feel. Programmers who
rely on the Panda3D game engine can
access its infrastructure via Python,

which is more intuitive and easier to use
than C++.

Getting Started
The Panda engine is easy to install – pro-
vided you have an RPM or DPKG-based
distribution. The Debian package from
the project homepage was also easy with
the latest Ubuntu. All it took to get
Panda running was a symbolic link from
/usr/lib/libssl.so.0.9.8 to /usr/lib/libssl.
so.0.9.7. In all other cases you will need
to build Panda from the source code. Al-
though this is fairly trivial, it does take
awhile, and there are a number of de-
pendencies on developer packages to
fulfill – OpenSSL and LibTIFF, for exam-
ple. Change directory to panda3d-1.2.3
for the build, and run makepanda/make-
panda.py --everything. If you leave out
the last parameter, Makepanda will list
the various build options. The doc/
INSTALL-MK file has more details.

Virtual worlds basically comprise sim-
ple, geometric elements that appear

more realistic when textures – that is,
images of genuine objects – are applied
to them. Realism is not always the goal.
For example, Toontown uses comic-style
characters (Figure 1), although this does
not influence the distinction between
geometry and surface properties in a 3D
model.

Models are typically drawn in special-
ist programs and then converted into a
format that the 3D engine can handle.

Several free game engines are available for Linux users, but programming with them is often less than

intuitive. Panda3D is an easy-to-use engine that is accessible enough for newcomers but still powerful

enough for the pros at Disney Studios. BY OLIVER FROMMEL

3D worlds with Python and Panda3D

VIRTUAL
PLAYGROUND

01 import direct.directbase.
DirectStart

02

03 panda = loader.
loadModel("models/panda")

04 panda.reparentTo(render)

05 panda.setPos(0,30,-5)

06

07 run()

Listing 1: A simple
Panda3D Script

P
h

oto
ca

se.co
m

Panda3DKNOW-HOW

52 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

53

There are export plugins to Panda3D for-
mat for the professional Windows tools
Maya, Softimage XSI, and 3DStudio Max.
A shareware program called Milkshape
provides a useful alternative for home
users; many people use it to edit Quake
models.

Linux users do not have any choice
here, with the Blender 3D program being
your only option. Blender does not sup-
port the Panda3D format, also known as
Egg, by default. To add support for Egg,
you will need to install one of three ex-
isting Blender plugins, all of which have
limitations. The most mature of these pl-
ugins is Chicken [2] by Peruvian devel-
oper Daniel Amthauer. While I was writ-
ing this article, Daniel released the com-
pletely reworked and improved version
1.0a of the plugin, which now includes
useful documentation (Figure 2).

To install Chicken, unpack the zip ar-
chive in your .blender/scripts directory.
Now launch Blender, and you should
find the Egg export feature below File |
Export | Chicken.

Loading a World
The sample files will be fine for our first
steps with the 3D engine; the default
install places these files in /usr/share/
panda3d/models. An extremely simple
Panda3D script loads and displays a
model (Listing 1). The results of this
simple script are shown in Figure 3.

The script starts by loading the basic
Python module direct.directbase.Direct-
Start. This makes a loader object avail-
able. The object provides the loadModel
which finally loads the model. As you
can see, I left out the .egg extension
here, as the engine does not need the
extension to find the model.

The load function returns a Python ob-
ject which can be used to reference the
loaded model in the course of the pro-
gram. The setPos() changes the position
of the model in 3D space. The first vari-
able represents the X coordinates, fol-
lowed by Y and Z. In a similar fashion,
setScale() scales the object in three di-
mensions. In the Panda coordinate sys-
tem, X points to the right, Z upward, and
Y into the screen, from the user’s point
of view.

You can now use your mouse to rotate,
move, and scale the model. Try all three
mouse buttons. Rotation may seem a lit-
tle strange at first. The reason for this is

that the axis of rotation lies outside of
the model.

Scene Tree
I haven’t yet explained Line 4 of Listing
1. It relies on a basic concept of three
dimensional computer graphics, scene
graphs. From a computer science point
of view, this is a graph that contains and
hierarchically organizes all the objects
displayed in a scene. However, this the-
ory is not important to the following
discussion; instead, just imagine a scene
tree.

The model of a human being can be
portrayed in a scene tree in such a way
that the rump is at the root of the tree,
and the arms and legs are represented as
branches of the tree. Hands and feet, fin-
gers and toes would then be twigs. The
advantage of this approach is that mod-
els with a hierarchical structure are eas-
ier to move in scripts. If the Python code
moves the rump
in our example,
the limbs of the
human model
would automati-
cally move with
the rump.

The same prin-
ciple also applies
to rendering attri-
butes, which de-
scribe the appear-
ance of the mod-
el’s surface. By
default, the ele-
ments lower down

the tree inherit the properties of their
parent nodes. For example, you can sim-
ply define the skin color for the rump
to apply the same color to the limbs. Of
course, you can change the appearance
of subordinate nodes however you like.

To make sure that Panda3D will
display the models you load, you must
insert them at a position below the ren-
der object in the scene tree. And this is
what Line 4 in Listing 1 does. At the end
of the script, you can see a run() instruc-
tion that starts the event loop; this is an
infinite loop in which the program runs,
updating the display, processing key-
presses, and so on.

Keys
The camera defines the appearance of a
scene on screen. Of course, the camera is
a virtual object like all the others, how-
ever, it possesses similar properties to a
real camera. The properties include the

Figure 1: Disney's online game, Toontown, was implemented using the free Panda3D engine.

Figure 2: The Blender plugin Chicken exports models to the Panda

Egg format.

KNOW-HOWPanda3D

53ISSUE 74 JANUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

camera position in the scene, the angle
on one or all three of the axes, the focal
distance, and many other things. The ex-
ample in Listing 2 shows how to move
the camera to change the view of the
model currently on display.

At the same time, the example demon-
strates how Panda3D processes user
keypresses. As this is simpler to handle
if your Panda program is based on a
class that provides appropriate keyboard
methods, this example is object-oriented,
in contrast to the previous one.

To keep things simple, the whole func-
tion resides in the Game class, which in-
herits from the Panda DirectObject.Direc-
tObject object (Line 6). To allow this to
happen, Line 4 imports the required
module. The code, which was previously
listed top down in the script, now moves
to the Game class __init__ constructor.
Now, when a new Game object is
created by a call to Game() in Line 32,
Python will automatically call the
constructor.

After loading, positioning and scaling
the model, we need some instructions to
handle keyboard input. The accept()
method provided by the DirectObject
class takes care of this. As the Game

class is derived from this, the method is
an instance method that can be ad-
dressed via the self keyword. The first
parameter it expects is a string with the
name of the key that was pressed. This
is followed by the function that we want
Panda3D to execute when the user
presses the key. Thus, Line 15 quits the
program when the user presses the
Escape key.

Camera
The next four lines map camera move-
ments to the cursor keys. The left and
right arrow keys run the spinCamera()
method; the up and down arrows call
zoomCamera(). When this function is
passed in by accept(), a list of additional
parameters can be added for Panda to
pass to the function in question.

In Listing 2, the only parameter passed
to the camera functions is the camera
motion direction (1 and -1), however, we
still need list notation with square brack-
ets. The disableMouse() with the Init
method switches automatic camera mo-
tion off. The last instruction uses the
camera lens object, base.camLens, to set
the clipping plane (the level at which
Panda3D will hide objects) to a value of
10,000. You could just as easily use the
camera lens object to modify the focus,
for example.

The functions for moving and rotating
the camera are easily mastered. The
angle and distance are multiplied by a
fixed factor, and then added to, or sub-
tracted from, the current value, depend-
ing on the direction. The camera meth-
ods setHpr() and setPos() assign the
resulting value to the default camera,
which you can reference as base.camera
in your own scripts.

Motion
In our last example, we moved the cam-
era round the panda bear, but the bear
itself was stationary. Two options that
compliment each other perfectly will add
more action: moving the model itself,
and moving the model through the
scene.

Some motions, such as walking,
jumping, etc., are best created in a 3D
modeller like Blender. You should use
Blender to design the phases of the
movement, and assign armatures to the
model to represent the bones of a living
being. After doing so, you can animate

01 import sys

02 import direct.directbase.
DirectStart

03 from direct.actor import Actor

04 from direct.showbase import
DirectObject

05

06 class Game(DirectObject.
DirectObject):

07 angle = 0

08 distance = 0

09 def __init__(self):

10 self.panda = loader.
loadModel("models/panda")

11 self.panda.
reparentTo(render)

12 self.panda.setPos(0, 1000,
-100)

13 self.panda.setScale(0.5,
0.5, 0.5)

14

15 self.accept('escape' ,
sys.exit)

16 self.accept('arrow_right',
self.spinCamera, [1])

17 self.accept('arrow_left',
self.spinCamera, [-1])

18 self.accept('arrow_down',
self.zoomCamera, [1])

19 self.accept('arrow_up',
self.zoomCamera, [-1])

20

21 base.disableMouse()

22 base.camLens.setFar(10000)

23

24 def spinCamera(self,
direction):

25 self.angle += direction *
1.0

26 base.camera.setHpr(self.
angle, 0, 0)

27

28 def zoomCamera(self,
direction):

29 self.distance += direction
* 10.0

30 base.camera.setPos(0,
self.distance, 0)

31

32 game = Game()

33 run()

Listing 2: Moving the
Camera

01 def __init__(self):

02 self.panda = Actor.
Actor("models/panda-model",
{"walk":"models/
panda-walk4"})

03 ...

04 self.panda.
reparentTo(render)

05 ...

06

07 self.accept('a', self.
animate_start)

08 self.accept('s', self.
animate_stop)

09 ...

10

11 def animate_start(self):

12 self.panda.loop("walk")

13

14 def animate_stop(self):

15 self.panda.stop()

Listing 3: Working with
Motion Phases

Panda3DKNOW-HOW

54 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

the model via individual motion points
just like a puppet.

After exporting your sequences via the
Chicken plugin, load the motion phases
to enhance the basic model. Panda3d
provides the Actor class for this purpose;
the class reacts more or less like a nor-
mal model, but it additionally processes
motion phases. Listing 3 shows an ex-
cerpt from a program that draws on this
ability.

The first parameter of the Actor
method, which specifies the basic
model, is followed by a Python diction-
ary whose keys define the motion phase
(walk), and whose values correspond to
the model sequences (models/
panda-walk4). You can then start the
animation with the loop() method and
repeat infinitely (Line 12). The stop()
function stops the motion: in our exam-
ple, Lines 7 and 8 map the [A] and [S]
keys to the functions.

Motion in a scene can be implemented
using the setPos() function referred to
earlier, however, Panda has a far more
powerful option: intervals. Intervals give
programmers the ability to simply spec-
ify start and end values and the duration
of the animations (that is positions,
etc.). Panda3D automatically handles the
intermediate values. Listing 4 demon-
strates how you can use an interval to
rotate the loaded model about its own
axis.

The first parameter in the hprInterval
method specifies the duration of the mo-
tion in seconds. This is followed by the
end point and the starting point of the
move; in this case, the rotation angle of

360 degrees. Additionally, Listing 4 in
the createmenu() function demonstrates
how to display help text with a single
line of code (Figure 4).

Tasks are another Panda3D feature
that save programmers work. The engine
will execute any tasks you register with
the global task manager object, taskMgr.
The task can either be performed imme-
diately or postponed to a later time using
the doMethodLater() method.

I will just mention a couple of other
features the Panda engine has; all of
them are fairly complex. For example,
Panda has basic collision detection func-
tionality to prevent unrealistic overlap-
ping of 3D models on screen.

Panda even has its own physics en-
gine. The engine forms the basis for real-
istic object behavior by assigning a mass
to the object. GUI functions that give
programmers the ability to create menus
are also available. And Panda3D has a

shader, a feature that has become really
popular, although currently, it only sup-
ports the Nvidia Cg shader language,
rather than the OpenGL standard GLSL.

The final dampener for fans of free
software is the internal sound engine.
Panda3D relies on FMOD, which is not
available under a free license. On a
brighter note, as Panda3D works well
with other frameworks; for instance, you
can replace the sound function with the
free Pygame package.

Progress Guaranteed
If you prefer not to use compiled lan-
guages such as C++, you can build 3D
models using the very useful and power-
ful Panda3D engine. Panda3D takes the
pain out of your first steps into 3D pro-
gramming. Just a few lines of Python
will let you load and animate models.
The documentation on the website in-
cludes a simple tutorial and a manual
that explains the most important con-
cepts and functions.

In contrast, the class and method ref-
erence leaves much to be desired. Since
Panda3D has a large user community,
sensible questions posted in the web
forum are typically answered quickly. ■

Figure 3: Panda3 displaying a finished model with just five lines of

Python (Listing 1).

Figure 4: Rotating and moving the panda. A single line of code out-

puts the help text (Listing 4).

[1] Panda3D:
http:// www. panda3d. org

[2] Chicken, Egg exporter for Blender:
http:// damthauer. byethost32. com/
panda

[3] Pygame:
http:// www. pygame. org

INFO

01 def rotate(self):

02 hprInterval = self.panda.
hprInterval(4,
Point3(360,0,0),
startHpr=Point3(0,0,0))

03 hprInterval.start()

04

05 def createmenu(self):

06 text = OnscreenText(text =
'a: animate, s: stop, r:
rotate, esc: exit', pos

07 = (-0.8, 0.9), scale = 0.07)

Listing 4: Working with
Intervals

KNOW-HOWPanda3D

55ISSUE 74 JANUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

