
62

The history of Linux includes
many attempts to address the
long Linux boot process. This

comes as no surprise, as a long boot
marathon will annoy all but the most pa-
tient of users. The legacy Unix System V
boot design was once revolutionary, but
has turned out to be a millstone around
the necks of many distributions.

Although several tricks for speeding
up the process have appeared through
the years, most boot reforms have
turned out to be unworkable in practice,
and many of the turbo loaders employed
by gurus are inaccessible to regular
users. A new tool, Upstart, takes a fresh
approach to speeding up Linux boot.

The high-flying Upstart project [1] in-
troduces a generic init daemon that le-

verages many developments in modern
Linux systems. Upstart, which has Unix
roots, cleverly steers clear of unneces-
sary waits, runs start scripts simultane-
ously, and reduces the boot time to a
minimum. The long-term plan is to re-
place generic background system ser-
vices such as the at daemon, cron, and
others with Upstart. Ubuntu 6.10 (Edgy
Eft) demonstrates the first effects of this
promising software.

It All Starts with Init
Most Unix-style systems share the init
concept. The process calls the kernel
and assigns the kernel process ID 1. This
sequence is hard-coded into the kernel –
in /usr/src/linux/init/main.c on Linux.
Init has the task of launching all other

userspace processes and initializing the
machine. The process and its helper
scripts load kernel modules, check and
mount the filesystem, set up the net-
work, launch servers, and call the graph-
ical login manager. Init has to launch the
services in a meaningful order. For ex-
ample, it doesn’t make sense to set the
system time by polling a time server on
the network until the machine becomes
available on the network. To do this, init
has to first initialize the network hard-
ware, and set up at least one network in-
terface for external access.

The number of services and back-
ground agents has grown over the years,
and this has made the init process
clumsy. In contrast, desktop usage,
which is typical for Ubuntu, demands a
dynamic system configuration. Mobile
devices also make life really difficult for
Sys V Init. Roving devices require an ad-
hoc approach to setting up network con-
nections, as well as a means for dynami-
cally configuring hardware.

J
a
m

es T
h

ew

Quick booting with Upstart, a replacement for the legacy Sys V Init

JUMP START
The slow Linux boot has troubled users for years. Now the Upstart

project offers a fresh approach to the problem of booting Linux.

BY NICO DIETRICH, DIRK VON SUCHODOLETZ

UpstartSYSADMIN

62 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

63

To cope with this, Linux programmers
have developed a number of tools: acpid
and apmd for power management, the
HAL Device Manager for dynamic
mounting of drives, and the Resource
Manager for dynamic device privilege
assignments to the user working with
the GUI desktop. Each of these sytems
implements its own configuration logic,
and admins have to be familiar with this
logic to be able to run a required task at
the right point in time.

Not all processes and services are tied
to starting or stopping a machine. For ex-
ample, there are some special services,
like cron and the at daemon, that launch
other processes at a certain time. They
are not linked to the runlevel system in
any way, although they have a similar
underlying logic. This is another thing
that Upstart looks to change [3].

Design Issues
Before the Ubuntu programmers decided
to develop a new system, they first in-
vestigated contemporary alternatives to
the familiar Sys V system [2]. None of
the designs they looked at fulfilled their
expectations or was available under an
acceptable license.

When they started to think about the
new design, they had to choose between
a target or result-oriented option for the
system launch. Target-oriented would
mean defining the services that should
be running at the end of the start se-
quence (KDM, SSH daemon, etc.).

In this case, it would be necessary to
investigate each service and determine
which other services it relied on. Based
on these dependencies, the init system
would need to derive a meaningful
startup sequence. This is exactly the ap-
proach that Gentoo adopted with its de-
pend system (see the “Gentoo” box);
Suse also follows this approach with a
modified version of the Sys V Init (see
the “Suse Linux” box).

In the other corner of the ring, there
were events. Instead of formulating de-
pendencies, which a script would proba-
bly need to handle at system start time,
an event-based system would not run a
script until a specific set of preconditions
was fulfilled. For example, it would not
make sense to call an NFS client until
the authoritative NFS became available.
The system that Ubuntu opted for also
understands more complex conditions,
such as “network configuration com-

pleted,” “Apache running,” or (in the fu-
ture) “USB stick plugged.”

Event Horizon
Events are basically just simple strings.
The Upstart developers divide events
into three classes:
• Simple edge events, such as “the sys-

tem is booting,” or “the user has just
pressed a button.”

• Level events have an additional pa-
rameter, such as the network interface
status. Services and tasks run either
for any Level Event, or only when a
parameter has reached a specific
value.

• Temporal events occur after a specific
interval, or at a specific point in time.

The developers kept to the open source
codex of release early, release often.
Thus, the code was released at a very
early stage, and the self-confident devel-
opers presented a running system, in the
guise of Edgy Eft, to demonstrate how
far they have gotten. Their aim is to col-
lect as much feedback as possible from
developers working on other Linux dis-
tributions.

However, this also means that the
specifications might change in the

The early Unix versions used a simple
shell script to configure the machine and
launch services. The design behind the
BSD family’s /etc/rc, for example, was
convincingly simple, but it did have one
major drawback. Integrating third-party
software, or custom-built extensions,
meant modifying the shell script. Unfor-
tunately, modifying this code is quite
dangerous – a single mis-
take could lead to an un-
bootable system.

In many cases, it takes
more than just a simple
command to launch a
service, with the details
varying depending on the
current environment. For
example, the ISC DHCP
server can be set up to lis-
ten on specific Ethernet
interfaces, rather than on
all ports. To remove the
need for administrators
to modify the start script
to do this, daemons often
come with configuration
files that parse the script.

This lets administrators update the start
scripts without endangering the local
configuration.

Sys V Init uses a far more flexible, but
also more complex, approach than BSD,
introducing runlevels that define specific
machine states, based on the processes
that run in them. A total of eight runlev-
els is possible, but not mandatory, for

any system. Three runlevels have clearly
defined tasks: Halt (0), Single User Mode,
and Reboot (6).

The /etc/inittab file specifies which run-
levels exist and defines the runlevel the
system enters on booting (Figure 1).

The Sys V design assumes that the sys-
tem will use a small number of defined
states, such as without network, with

network, with X11, and so
on. Administrators can
change the runlevel by
giving the init Runlevel
command.

Another advantage of this
approach is the separate
scripts for each service or
configuration task. For ex-
ample, calling /etc/init.d/
dhcpd restart lets you re-
launch the DHCP server
without affecting any
other services. The idea of
using a collection of sym-
links to determine the
scope and order of the
scripts used in each run-
level is also a good one.

Sys V Init

Figure 1: This typical inittab defines runlevels 0 through 6.

SYSADMINUpstart

63ISSUE 76 MARCH 2007W W W. L I N U X- M A G A Z I N E . C O M

course of the next few months. The ex-
amples described here refer to version
0.3 from early December.

This version replaces the existing init
process, however, don't assume that all
the start scripts have been modified to
use the event mechanism. Upstart does
not support temporal events right now,
and there are plans to use other pro-
grams, such as Udev and the ACPI or
APM daemons, as event sources.

State of the Art
The current version of Ubuntu boots
quite quickly, although you won’t see
much of what’s going on if you use the
default setup. The boot splash screen
with its progress indicator, and the OS
logo hide any useful information. Al-
though normal users may not object to
this, it takes some getting used to for ad-
mins. Even if you remove the colorful

splash (by deleting the splash token
from the kernel command line in grub),
you won’t see too many messages. If you
want more, just remove the quiet entry.

On first inspection, the changes under
the hood are also hidden. If you give the
man init or man telinit command, you
are informed that the runlevel system
has a new engine. No /etc/inittab file is
another telltale clue. /etc/init.d and the
accompanying start scripts still exist at
present as Ubuntu currently runs Upstart
in compatibility mode. The mid-term
plan is to allow /etc/event.d to handle
job definitions, which boil down to sim-
ple, non-executable files like the one
shown in Listing 1. The example takes
the easy way out, and simply calls the
old start scripts for runlevel 2 (line 20).

As you can see from line 5, we want
the script to run whenever the runlevel-2
event occurs. It ends if the events shut-

down, or runlevel-3 through runlevel-5
occur (lines 7 through 10). In the future,
more complex semantics will support
conditions with logical operators and
pass in parameters to event scripts, if
needed. These files play the same role
as the entries in the legacy /etc/inittab.
This is why Edgy Eft has both rc2 and
the files shown at the top of Figure 2.

Upstart-Compliant Jobs
There are two ways of defining your own
jobs. The simple method uses the exec
/path/program -O --optional parameter
approach. This works just like in the
shell. Upstart actually uses a shell to
handle quotes, "" or $. If the job defini-
tion contains more than a simple com-
mand line, the shell script can reside be-
tween the script and end script tokens
(Listing 1, lines 12 through 21).

There are two variations on this script-
ing theme, start script and stop script.
The start script does what the service re-
quires, like creating directories or check-As one of the more recent additions to

the Linux family, Gentoo solved the
problem of organizing runlevel scripts in
its own special way. To do so, it does not
use simple bash scripts as runlevel
scripts, but instead launches a separate
interpreter: /sbin/runscript. An example
of a typical structure follows:

#!/sbin/runscript

opts="depend start stop restart"

depend() {

 # dependencies and conditions

}

start() {

 # commands for starting
services

 # including preparatory tasks

}

stop() {

 # commands for stopping
services

 # plus clean-up actions

}

restart() {

 # Restarting as service

}

The string that follows opts lists all the
functions provided by the runlevel script.
If you need to add your own functions,
you just add them to the list, and script a
function block of the same name to

match. While the start, stop, and restart
sections keep to the traditional design,
more interesting things happen in de-
pend. A service depends on other ser-
vices or preparatory settings on the one
hand; but on the other hand, it can pro-
vide specific functions that other ser-
vices require:

• need service: Depends on the service.

• use service: Uses the service.

• provide functionality: Provides a spe-
cific functionality.

• before service: Should start before the
other service.

• after service: Should start after the
specified service.

Gentoo also supports virtual services,
such as net, as there are various kinds of
network (Ethernet, Modem, WLAN). This
also applies to mail servers (mta). The
start script can even determine depen-
dencies dynamically, as the /etc/init.d/
syslog-ng example shows:

case $(sed 's/#.*//'U

 /etc/syslog-ng/syslog-ng.conf) in

 *source*tcp*|*source*udp*|U

*destination*tcp*|*destination*udp*)

 need net ;;

esac

As long as the change does not conflict
with existing dependencies, admins can
alter the order in which services are
started, using before or after.

Gentoo

01 # /etc/event.d/rc2

02 # Runlevel 2 compatibility
 script for Upstart

03 # This job runs the old
Sys V scripts.

04

05 start on runlevel-2

06

07 stop on shutdown

08 stop on runlevel-3

09 stop on runlevel-4

10 stop on runlevel-5

11

12 script

13 set $(runlevel --set 2
|| true)

14 if ["$1" != "unknown"
]; then

15 PREVLEVEL=$1

16 RUNLEVEL=$2

17 export PREVLEVEL
RUNLEVEL

18 fi

19

20 exec /etc/init.d/rc 2

21 end script

Listing 1: Job Definitions

UpstartSYSADMIN

64 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

ing access privileges. The stop script
cleans up after the service terminates.

Self-Executing
Using a simple server as an example,
look at what creating your own Upstart
scripts involves. The server doesn’t have
to do anything but keep on running. The
following section is based on a two-liner
in /usr/local/bin/simpleserver.sh:

#/bin/sh
while true ; do sleep 1U
 ; done

Let’s call the event script for this service
/etc/event.d/simple-server. If we only
want to support manual launching of the
service, all we need is a single line in the
event script to start the server:

exec /usr/
local/bin/U
simpleserver.U

sh

To start and stop
services, including
the one just defined, we still rely on the
start and stop commands, plus there is a
new status call.

A simple start simple-server brings the
service to life. To see whether the com-
mand worked, use initctl list or status
simple-server. stop simple-server termi-
nates the service (Listing 2).

If everything is working, most users
do not want to see system messages.
However, log information can be useful,
especially if you just modified the sys-
tem. If you prefer not to output mes-

sages on screen at boot time, you can
check them later, of course.

Generally speaking, the Upstart script
output is passed to the logd included
with the package, and the daemon
hands them on to /var/log/boot (Listing
3). The initctl list call provides another
source of debugging output (Figure 3).

Upstarting Debian
As Ubuntu is based on Debian, the
chances of accelerating Debian, thanks

While the traditional Sys V Init folllows a
strictly linear approach, more recent
Suse Linux versions (10.0 or newer) sup-
port parallelization of boot script calls.
Administrators can enable this feature in
the /etc/sysconfig/boot file by setting the
RUN_PARALLEL variable to yes. This
changes the legacy sequence defined by
S00script1 through S99script25.
Instead, the .depend.boot, .depend.start,
and .depend.stop dependencies are ap-
plied. If an administrator adds a simple
script, say, S12nbd-server, to rc3.d, by
creating a link in the traditional manner,
the system will just ignore the change.
The insserv command handles this task
by evaluating the file header to ensure
correct resolution of dependencies:

BEGIN INIT INFO

Provides: nbd-server

Required-Start: $network

Should-Start: $syslog

Required-Stop:

Default-Start: 3 5

Default-Stop: 0 1 2 6

Description: U

Start Network Blockdevice Daemon

END INIT INFO

This hides much of the complexity from
the user, however, the approach does
not provide much in the line of speed
benefits. When we tested the Suse-style
boot on the X41 mentioned earlier on –
the machine admittedly has a fairly lame
hard disk – the parallel boot took just
over a minute, which is fairly close to the
70-second value for the legacy approach.
You can actually see some evidence of
parallel service launching; the screen
output is mixed up.

Suse Linux

Figure 2: Edgy Eft stores files that define jobs for the typical events

from the legacy inittab in /etc/ event.d.

01 root@EdgyEft:~# start
 simple-server

02 simple-server (start) running,
 process 6507 active

03 root@EdgyEft:~# stop
simple-server

04 simple-server (stop) running,
process 6507 killed

05 root@EdgyEft:~# status
 simple-server

06 simple-server (stop) waiting

07 root@EdgyEft:~# start
simple-server

08 simple-server (start) running,
process 6517 active

09 root@EdgyEft:~# status
 simple-server

10 simple-server (start) running,
process 6517 active

Listing 2: Service Control

Figure 3: The initctl list command provides you with a system status

overview.

SYSADMINUpstart

65ISSUE 76 MARCH 2007W W W. L I N U X- M A G A Z I N E . C O M

to the changes in Ubuntu, are pretty
high. If you are prepared to take the risk,
you can opt to either replace the existing
Sys V Init completely, or to use Upstart
in parallel.

The steps for implementing plan A
(using Upstart to completely replace the
legacy system) in Debian Unstable are
fairly simple – the developers of the dis-
tribution have already completed the
preparatory work by separating the sys-
vinit-utils from the sysvinit package.
This means that you can easily replace
sysvinit with Upstart, and just keep the
old scripts.

There is an Upstart package in the
Debian Experimental repository [2]. To
use the package, add the following entry
to your /etc/apt/sources.list:

deb http://ftp.de.debian.org/U
debian/experimental main

After doing this, give the command to
remove the legacy sysvinit package:

apt-get install upstartU
 upstart-compat-sysv

Because sysvinit is tagged as required,
the package manager will wait until you
type Yes, do as I say!. The next pitfall oc-
curs when you update. apt-get dist-up-
grade will remove the Upstart packages
you just installed, and reinstate the sys-
vinit package.

If this is your intention – that is, if re-
ally do want to reinstate Sys V Init – you

can simply give the apt-get install
sysvinit command to achieve your goal.

Self-Administration
If you decide to build Upstart yourself,
you should manually remove the sysvinit
package. If you fail to do so, make install
will overwrite the central binaries, and
the package manager will either ignore
the changes, or worse, decide that your
system is corrupted. This said, it is easy
to build and install Upstart from the
source code [1]:

./configure --prefix=/usr U
--exec-prefix=/U
 --sysconfdir=/etc
make
make install

After completing these steps, the system
will ask you for your init scripts.

To get started, download the exam-
ple-jobs-2.tar.gz tarball from the /down-
load directory [1] and unpack in /etc/
event.d.

Parallel Worlds
If you want to avoid an unsuccessful Up-
start installation wrecking your working
System V Init system, you can install Up-
start side by side with Sys V. To do so,
follow the same steps as for the Upstart-
only install, but keep the sysvinit pack-
age, and make sure the new init ends up
in /opt/upstart:

./configure -prefix=/opt/U
upstart --sysconfdir=/etcU
 --enable-compat

In this scenario, you will need to modify
the scripts you dropped into /etc/event.d.
To do this, just add the following line
after the script line in rc-default and
rcS-sulogin:

export PATH=/opt/upstart/U
sbin:$PATH

Because the Upstart directory is at the
beginning of your search path, scripts
will use the new telinit command.

The system will still boot Sys V Init by
default, but on booting, you can tell the
kernel to use an alternative to the legacy
init. The following kernel command line
parameters will do the trick: init=/opt
/upstart/sbin/init.

For simple tests, you might prefer to
enter the parameters at the bootloader
prompt, but you could add a bootloader
configuration menu entry if you prefer
(Listing 3a, line 5).

Analysis
Bootchart [4] gives admins an excellent
method for comparing the legacy and
new boot processes. The tool logs the
CPU load and hard disk I/ O performance
at boot time and later converts the re-
sults to a neat graph. To allow this to
happen, you need to install the Boot-
chart package and add an entry to the
kernel command line. bootchartd runs as
an initial process and launches the init
process proper.

Listing 3b shows you the entry for
Grub. If you are running Upstart in side-
by-side mode with the legacy Init, let
Bootchart know by adding the following
to the kernel command line:

bootchart_init=/opt/U
upstart/sbin/init

After doing so, Bootchart will log any
interesting process data every 0.2 sec-
onds and store the information in /var

01 [...]

02 Dec 3 18:44:59 rc2:
* Starting deferred execution
scheduler atd [ok]

03 Dec 3 18:44:59 rc2:
* Starting periodic command
scheduler... [ok]

04 Dec 3 18:44:59 rc2:
* Enabling additional
executable
 binary formats ...[ok]

05 Dec 3 18:44:59 rc2:
* Checking battery state...
 [ok]

06 Dec 3 18:44:59 rc2:
* Running local boot scripts
(/etc/rc.local) [ok]

Listing 3: Upstart Boot

01 # /boot/grub/menu.lst

02 [...]

03 title Ubuntu, kernel
 2.6.17-10-generic

04 root (hd0,0)

05 kernel /boot/vmlinuz-
2.6.17-10-generic root=/dev/
hdb1 ro quiet splash init=/
opt/
upstart/sbin/init

06 initrd /boot/initrd.img
-2.6.17-10-generic

07 boot

08 [...]

Listing 3a: Grub
Configuration

01 # /boot/grub/menu.lst

02 [...]

03 kernel /boot/vmlinuz
-2.6.17-10-generic
 root=/dev/hdb1 ro quiet
 splash init=/sbin/bootchartd

04 [...]

Listing 3b: Bootchart

UpstartSYSADMIN

66 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

advertisement

/log/bootchart.tgz once the boot process
has completed. The bootchart -f png gen-
erates a PNG graphic from the data, with
svg and eps as your other options.

If you compare the Sys V boot graph
in Figure 4a with the Upstart graph in
4b, the results are misleading. On our
lab machine, Bootchart reports that the
legacy Sys V Init takes a hefty 33 sec-
onds, whereas Upstart is all done in 23
seconds flat.

Checking these results with a stop-
watch revealed that the gain is actually
a mere two seconds. Bootchart stops the
clock as soon as KDM or another login

manager is launched. The fact that Up-
start launches jobs in parallel means that
this step simply begins earlier, before all
the other critical boot processes have
completed.

It would be unfair to the Upstart proj-
ect to ignore the promise of Upstart on
the basis of the current test results. Re-
member that the init successor will be
running in compatibility mode until
more progress has been made.

You can expect major speed gains as
soon as the individual start scripts have
been adapted to support the new system.
Thus, Ubuntu does not expect to see

major boot speed gains until Edgy is re-
placed by Feisty Fawn.

Conclusion
The days when a computer booted in a
couple of seconds are gone, and the kind
of surgery that many distributions use to
patch up boot performance are not likely
to correct the problem. The future looks
good for new designs like Upstart.

Even if Upstart does not offer the same
kind of “switch on and go” feeling you
get from a gaming console, it requires
less patience than the legacy system. Of
course, a fair level of administrative skill
is required to migrate a working Linux
machine without having to reinstall.

Our crystal ball reveals that Upstart is
aiming to do more than simply rejuve-
nate the boot process: the developers en-
visage a central service daemon that will
take over chores that are handled by a
potpourri of tools right now. This in-
cludes executing specific events at spe-
cific times, in other words, replacing
cron and at. In the meantime, Upstart
still has to demonstrate its ability to or-
ganize the boot process in a meaningful
way, and as of now, it’s well on the way
to doing just that. ■

Figure 4a: This Bootchart analysis shows Debian GNU/ Linux booting with the legacy init pro-

cedure.

Figure 4b: Replaying Sys V Init with Upstart does not change the results greatly.

[1] Ubuntu Upstart:
http:// upstart. ubuntu. com

[2] Upstart in the Debian Experimental
branch: http:// packages. debian. org/
experimental/ admin/ upstart

[3] Scott’s blog entry on Upstart:
http:// www. netsplit. com/ blog/ articles/
2006/ 08/ 26/ upstart-in-universe

[4] “Boot Camp” by Charly Kühnast, Linux
Magazine, March 2005, pg. 61

INFO

Nico Dietrich studies computer sci-
ence at the Technical University in
Berlin, Germany, and is interested in
free software, direct democracy, and
developing countries. He will be
looking to combine these fields after
graduating.

Dirk von Suchodoletz works as an
assistant at the Department of Com-
munication Systems at the Univer-
sity of Freiburg, Germany. His devel-
opment work focuses on diskless
Linux projects, which explains his
interest in system boot variants in
general, and in accelerating the boot
process in particular.

T
H

E
 A

U
T

H
O

R
S

UpstartSYSADMIN

68 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

