
The Linux kernel mailing list
comprises the core of Linux
development activities.
Traffic volumes are immense,
often reaching 10,000
messages in a week, and
keeping up to date with the
entire scope of development
is a virtually impossible task
for one person. One of the
few brave souls to take on
this task is Zack Brown.

 Zack Brown

Zack’s Kernel News
Chronicler Zack

Brown reports on

the latest news,

views, dilemmas,

and developments

within the Linux

kernel community.

By Zack Brown

The Kernel Development
Process
An interesting debate recently shed some light
on the kernel development process. Greg
Kroah-Hartman started up the stable review
cycle for the 3.3.2 kernel. The idea of the re-
view cycle is to incorporate patches into the
tree and give people a chance to test them be-
fore the 3.3.2 kernel is actually released. The
goal is to get Linus Torvalds’s 3.x releases as
stable as possible while Linus and the rest of
the developers continue preparing the next 3.x
release. In theory, the 3.3.1, 3.3.2, 3.3.3, …,
3.3.y kernels will each be more stable and reli-
able than the one before.

An interesting incident this time was that
several users noticed system crashes in the
3.3.1 release because of a patch dealing with
the suspend/​resume code. Users had found
that reverting that patch would fix the prob-
lem; so, Sergio Correia and Felipe Contreras
asked Greg to revert that patch in the 3.3.2 ker-
nel. No problem, right?

Not quite. Greg replied that according to the
procedures for stable kernel development, the
patch couldn’t be reverted until it was reverted
in Linus’s upstream tree as well. In fact, ac-
cording to Documentation/stable_kernel_rules.
txt, any patch submission (including a patch
reversion submission) to the stable tree had to
include the commit ID of the same patch in Li-
nus’s upstream version.

Felipe didn’t like this answer at all and said
that Greg was being too hidebound by arbi-
trary rules when there was a clear and obvious
fix that would allow real computers to be boot-
able that currently weren’t. He said that revert-
ing the patch was known to produce a working
system because the kernel had worked before
that patch had been applied. Reverting it in
Greg’s 3.3.2 kernel would not be introducing
any new code, but would simply be going back
to a known working state.

Greg held firm on the decision though, and a
number of people backed him up. Adrian
Chadd from the FreeBSD project said that this
particular rule was crucial for maintaining a
sane development environment. Allowing the
stable tree to diverge from the upstream ver-
sion would create a situation in which end
users and distributions would be submitting
bug reports and feature requests, not to men-
tion patches, that would only apply to the sta-
ble tree and not to the upstream version,

where the real development was supposed to
be taking place.

Adrian cited his own experience, saying,
“We had this problem with Squid. People ran
and developed on Squid-2.4. The head ver-
sion of Squid-2 was stable, but that isn’t what
people ran in production. They wanted fea-
tures and bugfixes against Squid-2.2, squid-
2.4, and not Squid-2.STABLE (which at the
time was Squid-2.6/​Sqiud-2.7.) That … didn’t
work. Things diverged quite quickly and it
got very ugly.”

Willy Tarreau also defended Greg’s decision
and the general policy. He pointed out that if
the developers didn’t make sure that all fixes
for the stable tree also appeared in the up-
stream kernel, the next stable tree would risk
missing that fix because it would be based on
the upstream tree that was also missing the
fix. He said, “Most stable users will switch
from a stable version to another one in a next
release, and these users do not want any re-
gression. This means that we absolutely don’t
want to risk that a stable version has a fix
that is missing from a newer version. Yes this
is a crappy and annoying process but it’s the
only way to ensure that fixes don’t get lost
during an upgrade.”

Willy also pointed out that the only thing
keeping the patch reversion out of the stable
tree was its absence in the upstream kernel;
and that this would undoubtedly be fixed
soon as a result of the current conversation;
after which, Greg would be free to incorpo-
rate the fix into the stable series with no
problem.

Linus also got into the discussion, saying,
“If ‑stable starts reverting things that aren’t
reverted upstream, what do you think hap-
pens to the *next* kernel version? We have
those ‑stable rules for a very good reason –
we used to not have them, and the above
‘oops, we fixed it in stable, but the fix never
made it upstream’ happened *all*the*time*.”

Linus also mentioned that the reversion in
question was already making its way through
the submission process and would get to him
shortly. A little later in the discussion, he re-
ported that the fix had made it into his Git
tree and was now available for Greg to revert
in the stable branch. He added, “But the im-
portant lesson to everybody should be that
‘we don’t lose fixes from ‑stable’. If a problem
was found in stable, it needs to be fixed up-

August 2012	 Issue 141	 linux-magazine.com | Linuxpromagazine.com	92

Community Notebook
Kernel News

stream. In fact, quite often people *do* find problems in stable, because it tends to have
more users more quickly than mainline. That makes it really really important to make sure
that those problems get fixed upstream, and not hidden in stable due to some kind of dis-
eased ‘it’s a no-op to revert it’ thinking.”

None of these arguments made sense to Felipe. He said he was all in favor of fixing the
upstream as well as the stable kernel; he just didn’t see any reason to wait on it. If there was
a known bug in the stable tree, the thing to do was to fix it there. We’d still have the knowl-
edge of the bug, and developers could fix it in the upstream tree as well. The two didn’t
have to be linked by formal processes.

But David S. Miller pointed out that in practice, it just didn’t work that way. Before the
current set of rules had been in place, fixes did go into the stable series and did get lost and
not applied to the upstream kernel; sometimes, long periods would go by before the discrep-
ancy was discovered. The rules were put in place because they forced the developers to take
that extra step of ensuring that the fix went into the upstream kernel before allowing it to go
into the stable tree.

This also made no sense to Felipe. He pointed out that the whole point of the stable re-
leases was to add stability to the kernel, not to sort patches for the upstream developers.
And in this particular case, he argued, real systems were unable to boot because of a known
fix being left out of the stable series, just so it could be included in the upstream kernel first.

At this point, the discussion started to get repetitive. It seems to me that the spirit of Felipe’s
point was a good one – fixes should get into the stable series quickly and not be held up. Un-
fortunately, as many people pointed out, there’s a practical side of things that needs to be
taken into consideration, and the kernel developers have set up processes that try to address
those practical concerns. In this case, for example, they decided that even though the stable
series is supposed to produce stable kernels and nothing else, it just happens to also be an
important and useful mechanism for improving the development kernel as well.

Therefore, a fix has to go through a bit of an extra step before it gets applied. It’s not
unlike a standard kernel algorithm, that does a little extra thing along its run-time path
because that just happens to be a very convenient moment for that extra thing to get
done. The kernel is developed at a freakishly fast pace, with huge numbers of con-
tributors all funneling changes up to Linus, and it’s this effort to treat the devel-
opment process as an algorithm of its own that makes this possible.

Interestingly enough, the history of stable trees versus development trees is
a perfect case in point. Originally, there was just development, with patches
going into the tree and no real effort at stabilization beyond the developers’
natural desire to have something that worked. Then, they implemented the
old even/​odd approach, wherein kernel versions x.even would be a stable
tree and x.odd would be a development tree; they would each take turns,
with the stable series sometimes going on for over a year before work
could begin again on a new development branch.

That became tortuous, and eventually Linus abandoned that approach
and went back to just developing the tree all the time again, with no par-
ticular plan for stability. At that point, folks like Greg decided to take a
new approach to stable trees – namely, to take each release from Linus
and make that the first release of a new stable series that would be
maintained for some period of time before being dropped. At the time,
Linus called these the “sucker” trees because of the insane amount of
work it would require from the people maintaining them.

Over time, the various policies surrounding these trees continued to
evolve and develop, addressing problems as they arose by implementing
nuanced policies like the one debated in the recent thread. Eventually, the tra-
jectories of the current policies will reveal a new problem that no one anticipated,
and the algorithm of kernel development will take another evolutionary step
forward. It’s a fascinating and rewarding process to observe. nnn

linux-magazine.com | Linuxpromagazine.com	 Issue 141	 August 2012 93

Community Notebook
Kernel News

