
The Linux kernel mailing list
comprises the core of Linux
development activities.
Traffic volumes are immense,
often reaching 10,000
messages in a week, and
keeping up to date with the
entire scope of development
is a virtually impossible task
for one person. One of the
few brave souls to take on
this task is Zack Brown.

 Zack Brown

Zack’s Kernel News
Chronicler Zack

Brown reports on

the latest news,

views, dilemmas,

and developments

within the Linux

kernel community.

By Zack Brown

about endianness issues in order to avoid an-
noying, difficult debugging issues further
down the road.

Theodore Ts’o came back to the issue of
whether LanyFS was needed at all. He said,
“What I would do if I needed to transfer such
a [6MB] file, and I didn’t have access to high
speed networking, would be to use ext2, and
then either use the ext2 FUSE driver with
FUSE for Windows or Macintosh – or, I would
port the userspace e2tools package to the tar-
get OS, and use that to access the ext2 file
system. And I’d do that because the software
is available today, right now, without having
to figure out how to port LanyFS to the oper-
ating system.”

He added, “I also seriously question the
niche of people who want to use a thumb
drive to transfer >4GB files. Try it sometime
and see what a painful user experience it
is … .”

Dan did get some support though. Carlos
Alberto Lopez Perez pointed out that Micro-
soft was currently pushing their exFAT filesys-
tem as the preferred way to deal with Dan’s
use-case. But, as Carlos pointed out, “The
problem is that exFAT is full of patents and
they require you to purchase a license for
use.” He said LanyFS might be a great alter-
native to exFAT, especially because movie
files were getting bigger and bigger and
would eventually be too big for FAT32. How-
ever, Carlos supposed Microsoft would be re-
luctant to support LanyFS, as it was in com-
petition with their exFAT new hotness.

Raymond Jennings also liked the idea of
having an alternative to exFAT, given the pat-
ent entanglements that were likely to come
up if anyone even thought about writing a
Linux port. Alexander Thomas also thought
that LanyFS would be a fine alternative to
exFAT, and he didn’t think much of FAT32 as
a filesystem either. However, he too acknowl-
edged that it might be an uphill battle getting
major vendors to adopt LanyFS.

The debate continued. At one point, Arnd
Bergmann mentioned that he had been coop-
erating with a vendor to produce a flash file-
system that would be very simple and opti-
mized for most flash media. But, he didn’t
want to go into detail ahead of the vendor’s
own announcement. So, at the very least,
there is interest from various directions in a
LanyFS-type filesystem.

Simple Flash Filesystem
Dan Luedtke recently announced LanyFS – a
filesystem to use with any drive you might
carry on a lanyard or keychain – essentially,
small flash drives. The goal was to make the
filesystem so simple that it would work easily
on any operating system. In this case, the lack
of features was itself a feature.

Richard Weinberger and Marco Stornelli
didn’t see the point of such minimalism. To
them, it just seemed like reinventing the
wheel, because other filesystems already ex-
isted with a larger set of features. And, Alan
Cox gave a link to an interesting article at
http://​lwn.net/​Articles/​428584/​ that discussed
the ins and outs of trying to code a flash-ori-
ented filesystem.

Dan pointed out that the filesystem’s web-
site, at http://​nonattached.net/​lanyfs/​, didn’t
have complete explanations because the proj-
ect was part of his Master’s thesis, and he
wasn’t sure how much information he was al-
lowed to publish before submitting the work to
his professors.

But, he did say that he hoped the filesys-
tem’s minimalism would work well with Ardu-
ino projects or other small embedded systems
that only wanted to read or play files. The Ar-
duino platform had been a particular motiva-
tion for him when his Arduino project ran into
trouble with FAT32 files that grew too big for
that filesystem. Another motivation had been
to interoperate with as many other types of
filesystems as possible, without worrying too
much about ownership information and other
metadata.

There was much skepticism. Marco pointed
out that FAT32 was really the standard for the
kind of use-case Dan was trying to meet. The
FAT32 file size limitation didn’t seem sufficient
to justify a whole new minimalist filesystem.

But, some people did offer actual feedback
about Dan’s code. Al Viro pointed out a signifi-
cant security hole. Because LanyFS allowed in-
finite recursion, it would be trivial for an at-
tacker to overflow the kernel stack, he said.

Al pointed out a few other technical issues
and made an interesting comment at the end
of his post about endianness. Apparently,
Dan’s code flipped its byte endianness in
place, instead of taking the more laborious
route of having specific variables accept only
values with specific endianness. Al recom-
mended being extremely verbose and obvious

January 2013	 Issue 146	 linux-magazine.com | Linuxpromagazine.com	92

Community Notebook
Kernel News

UEFI Support

Matthew Garrett posted some patches to
try to limit the root user’s ability to mod-
ify the kernel. The idea was to support
the Unified Extensible Firmware Inter-
face (UEFI). Ideally, the UEFI would pre-
vent a signed operating system from
being able to boot an unsigned operating
system. This would give hardware and
software vendors the ability to control
and limit how their products could be
used after purchase.

Alan Cox didn’t think it would be pos-
sible, at the kernel level, to prevent the
root user from regaining control. He
said, “an untrusted application can at
GUI level fake a system crash, reboot
cycle and phish any basic credentials
such as passwords for the windows par-
tition.”

Matthew thought that hostile software
trying to phish credentials could be de-
feated by a Secure Attention Key (SAK). A
SAK is a trusted key combination that ini-
tiates a known login process. If an un-
trusted application tried to make the user
think the system had rebooted, the SAK
would expose the subterfuge by invoking
the kernel’s native login process, instead
of the fake one presented by the hostile
software. In response, Matthew’s sugges-
tion was simply to implement SAK sup-
port in the Linux kernel.

Pavel Machek was dubious about that
idea. First of all, he said, SAK had to
display identically on all systems to be
effective. So, it would have to include
the penguin logo and a “This is not
Windows” message, all in the kernel
code.

The discussion ended there, but it’s
clear that UEFI support will be part of
the kernel in one form or another. It’s
kind of surreal to hear Linux developers
discuss ways of taking away the ability of
the user to control their own system.
However, as Linus Torvalds once said
about Digital Rights Management
(DRM), it’s just a feature. It can be en-
abled or not; it can be used for good or
bad purposes, and it’s impossible to
guard against the bad without also pre-
venting the good.

Don’t Make ABI Changes…
Or Else

Linus Torvalds went on a tear over Appli-
cation Binary Interface (ABI) changes.
He really hates those things. In this par-
ticular case, Thomas Gleixner had posted
what he thought was a simple fix, getting
rid of a null pointer issue in the itimer
code, but because the change would be
to the ABI, Linus replied, “That’s not
how ABIs work. If it has become some-
thing people rely on, it now *is* part of
the ABI, and no amount of ‘violates the
spec’ matters what-so-ever. ‘The spec’ is
paper – and worthless. What people ac-
tually *do* is all that matters.”

Michael Kerrisk put his head in the li-
on’s mouth suggesting that, with enough
lead time to prepare users, an ABI change
should be OK. He added that if a change
were to be made in this particular case, it
should be to make Linux match up with
other existing systems like FreeBSD and
NetBSD. Linus replied:

“YOU SHOULD NOT MAKE ABI
CHANGES.

I don’t understand why this seems to
be so hard for people to understand.
There are exactly *zero* reasons to
change the ABI for its own sake, and this
whole thread is a wonderful example of
how F*CKING STUPID it was to even con-
sider it. There are real and valid reasons
to change the ABI, but for every single
one of them, there is some external issue:

– security. We’ve had cases where we
had an ABI that simply exposed too much
information.

– implementation issues. Sometimes,
we’ve done something really really
badly, and some subtle ABI issue may
simply not work. This is basically never
about normal system calls used by nor-
mal applications, though – it’s about
things like the whole iptables flaps etc.

– actual real applications
breaking. We’ve had cases
where we simply did things
wrong, and portable appli-
cations broke. Then we
can *try* to fix it, and
see if something else
breaks from that.

And quite frankly, for all but the secu-
rity case, even then we’re often better off
at least having a compatibility layer for
the old cases, even if it was bad and
wrong (example: the very original linux
‘select()‘ timeout behavior, where Linux
did the documented thing, but nobody
else did. Or the various versions of
‘stat()‘ we’ve had. Or the inotify/​dnotify/​
fsnotify things).

Occasionally some compat model may
not be worth it (if the interface is too spe-
cialized and there really is just one or two
system apps that use it), but that’s very
very rare to the point where it shouldn’t
even be considered an issue.

Quite frankly, our most common ABI
change is that we don’t even realize that
something changed. And then people
may or may not notice it. And we’ve had
cases where the same system call returned
different things for different subsys-
tems, and we tried to make it at least in-
ternally consistent.

But the ‘premeditated ABI change just
for the reason of an ABI change’? It’s
bullshit. And it’s bullshit whether it
shows up in feature-removal or not. (The
whole feature-removal file is BS, for that
matter, but that’s a different issue).

SO STOP DOING ABI CHANGES. WE
DON’T DO THEM.

The absolute worst thing a kernel can
do is ‘change the user-level interfaces’. It
has to be done occasionally (see above),
and sometimes we do it by mistake, but

anybody who does
it on purpose

‘just because’
should not be
involved in
kernel devel-
opment (or li-
brary develop-
ment for that

matter).” nnn

linux-magazine.com | Linuxpromagazine.com	 Issue 146	 January 2013 93

Community Notebook
Kernel News

