
or upload new ones with malicious code.
Users cannot easily detect a problem un-
less they have a copy of the code for
comparison or they compare the changes
in the new version against an old ver-
sion. And yes, people do break into
major sites (e.g., the Linode hack earlier
this year) [1].

Why People Don’t
Sign Code
Why don’t upstream open source proj-
ects sign their code properly? Doing so
would allow vendors like Debian and
Red Hat and end users to verify easily
that the code was signed by the project
in question. There are several reasons:
the first is that signing code correctly,
even minimally, is a chore and requires
some setup. But, more importantly, it
requires ongoing discipline; you must
protect the signing keys forever, you
must sign and verify the signed code,
and you must handle key management.
Additionally, code signing only proves
that a file containing certain content
was signed; it does nothing to attest to
the quality of the code (everyone has
security flaws in their software). For all
you know, the upstream project has
taken code contributions containing a
back door.

The third and, in my opinion, biggest
reason is that unsigned code and all the

F
irst, the good news: Most major
Linux vendors sign their software
and source code packages, thereby
allowing end users and adminis-

trators to verify that the code has in-
deed originated from the vendor

and hasn’t been modified or
tampered with after being
signed.

Most tools like Yum and
RPM check package signa-
tures by default and will re-
fuse to install or upgrade
packages unless they are
properly signed (which you
can override manually). So,
why am I worried about up-

stream code signing of up-
dates? Because very few
open source projects ac-
tually sign their code
properly, if at all. This
means that if an at-
tacker breaks into a
distribution site,
they can modify
existing source

code packages

Insecure updates are the rule, not the exception

 Mixed Signals
Kurt looks at the practice of code signing and examines why

so few upstream open source projects actually do it.

 By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt Seifried

60

Features
Security Lessons: Signing Code

July 2013	 Issue 152	 linux-magazine.com | Linuxpromagazine.com	

the system design and implementation.
It even addresses possible problems like
key compromise.

One basic thing to keep in mind about
security, especially for software updates,
is that you need to make your system as
secure as you can, but you also need to
make it possible to return to a known
good state (i.e., you have removed all
the compromised packages and so on
from your update infrastructure).

TUF places all of the heavy lifting on
the server and end client. Thus, the inter-
mediary mirror systems don’t even need
to know about it, which in turn makes
deployment possible (trying to get a
major mirror site to install some software
so they can securely serve updates is a
battle you will lose). Unfortunately, TUF
isn’t perfect – the only client is written in
Python, so integrating it with non-Python
software or on systems that don’t natively
support Python (e.g., Windows) will be
difficult, to say the least. For more infor-
mation, an excellent lightning talk is
available on YouTube [6] that covers all
the basics of TUF using PyPI.

Conclusion
You can certainly use TUF to secure up-
dates, but, unfortunately, deploying TUF
is nontrivial. You’re going to need at least
two servers (in case one fails) and some
keys that will require management. That
means it’s probably not going to be used;
in fact, I’m not aware of any software that
uses TUF for updates. So, unless people
start demanding that organizations and
vendors, like WordPress, Drupal, Joomla,
RubyGems, PyPI, Hackage, CPAN, and so
on, start providing secure updates for all
the code they make available, it isn’t
going to happen. nnn

problems that come with it don’t cost
the code author anything. Virtually all
the costs of distributing malicious code
are borne by end users; the author rarely
incurs any cost or penalty.

A perfect example is the Social Media
Widget incident [2]. The company re-
sponsible for this WordPress plugin out-
sourced development to a company that
inserted malicious PHP code. Fortunately
(as far as is known), the code inserted
just displayed an ad and didn’t attack
the server or users’ systems. The Word-
Press team accepted this explanation
and reinstated the plugin. So, the cost in
terms of money, time, and effort was ba-
sically zero for the Social Media Widget
plugin.

How to Sign Code
Signing code is easy; you just use a tool
like GPG and create a signature, usually
external, so you have foo.tar.gz and
foo.tar.gz.asc. You then provide the sig-
nature file, typically by putting it into the
same directory or download system as
the files. Then, you need to make the
signing key available in a secure manner.
You can get your key signed, but the
chances of getting it signed by widely
trusted keys (e.g., vendor distribution
keys) are minimal. Your best bet is to
make the GPG signing key available on
the project website via HTTPS so that
users have a reasonable chance of down-
loading it without an attacker modifying
or spoofing it. Simple, right?

Well, you also have to handle key se-
curity. The signing key must be as secure
as possible, which ideally means placing
it on a hardware module that is external
to your computer and only plugging it in
and using it as needed, thereby minimiz-
ing the window of opportunity for an at-
tacker to compromise it.

In a perfect world, your signing server
is offline so that attacks cannot be
launched against it. The cheapest way to
put your signing key into a secure hard-
ware module is to use an OpenPGP-com-
patible card [3]. These cards are not too
expensive; Kernel Concepts sells them
for about US$ 20 [4], and you’ll also
need to buy a reader. You’ll also need to
choose a key lifespan. Note that keys
should expire. This ensures that, say, 20
years from now, when attackers can
crack 4096-bit keys on their quantum-
enabled smartphones, the key you cre-

ated cannot be used for nefarious pur-
poses.

Attacks Against
Signed Code
So, now the code is signed, and every-
thing is good, right? Nope. Even if pack-
ages are signed properly and clients ver-
ify the signatures properly (which won’t
happen unless the process is automated
and fails to close when the signature is
invalid, as with Yum and RPM), a num-
ber of attacks are still possible. The sim-
plest and most direct attack is to provide
older signed packages that have known
security issues. This attack is especially
easy if the file signature doesn’t also
confirm that the filename has not been
changed. Do you ever read ChangeLog or
VERSION to confirm the package version?

Another attack is to prevent any up-
dates of software by deleting new ver-
sions, or making downloads incredibly
slow, or by feeding infinitely large files
to clients. Unfortunately, this approach
is more effective than you’d think. For
example, when was the last time your
update software warned you that no up-
dates had been installed for a few
months?

Addressing such attacks is not simple
and depends on the client having infor-
mation available to check. For example,
Yum downloads a copy of the repository
data and then gets the packages, which
prevents replaying of older packages
(unless the user forces a downgrade
manually) and also lets the client know
whether updates should be available.
Note, however, that if the attacker can
modify the RPMs, chances are they can
mangle the repo data as well.

For software that doesn’t take this ap-
proach, such as WordPress, I suggest
keeping a copy of the software that you
download so you can compare newer
versions to it and make sure that the ver-
sion you’re downloading is actually
newer than what you have.

The Update Framework
As with most things in open source, you
don’t have to reinvent the wheel. The
Update Framework (TUF) [5] is available
under an open source license (but not
one I recognize) and is written mostly in
Python, so it’s pretty understandable.
Even better is that all the above security
issues have been taken into account for

[1]	� HTP Zine 5: http://straylig.ht/zines/
HTP5/0x02_Linode.txt

[2]	� Social Media Widget remote file in-
clusion:
http://​seclists.​org/​oss‑sec/​2013/​q2/​83

[3]	� OpenPGP Card: http://​en.​wikipedia.​
org/​wiki/​OpenPGP_card

[4]	� Kernel Concepts Security/​Smart-
cards: http://​shop.​kernelconcepts.​de/​
index.​php?​cPath=1_26

[5]	� The Update Framework:
https://​www.​updateframework.​com/

[6]	� TUF lightning talk: https://​www.​
youtube.​com/​watch?​v=2sx1lS6cT3g

 Info

61linux-magazine.com | Linuxpromagazine.com	 Issue 152	 July 2013

Features
Security Lessons: Signing Code

