(Almost) undetectable hardware-based rootkits
Fourth-Generation Rootkits
We look at the history of the rootkit, including its newest incarnation, the DR RootKit.
Originally, I intended to write an article about the current state of rootkits and the tools that could be used to detect them. But I ran into a slight problem – the more modern rootkits tend to be really good at avoiding detection. By really good, I mean that you're unlikely to detect them unless you take action, such as a detailed analysis of a system memory dump, for example, comparing the actual kernel image with the expected.
History Lesson
Traditional rootkits were relatively simplistic programs, often running as a standalone daemon providing backdoor access. These were generally easy to detect by looking for a new process or newly installed software, which led attackers to start subverting system binaries. In turn, this led to attackers installing modified system binaries, such as hacked versions of OpenSSH that have a hard-coded administrative username and password to get root-level access. With the advent of tools such as Tripwire and the increasingly common use of package managers that can verify the integrity of installed files, such as RPM and dpkg, these became easy to detect [1].
Kernel-Based Rootkits
Soon attackers realized that more sophisticated hiding and subversion methods were needed to control a system, which led to kernel-based rootkits. By modifying the system call table, an attacker can avoid detection easily because, simply put, they control what you are seeing and how your programs are executing.
Typically attackers use one of two methods to modify the system kernel: either loading a malicious kernel module (e.g., heroin) or patching the in-memory kernel by writing to the special device /dev/kmem (e.g., SucKIT). Because these attacks live in memory only, their disadvantage is that they typically do not survive a reboot.
Difficult as they can be to detect, these rootkits can be found by comparing the current system call table with the expected (i.e., by examining the file System.map). Dumps of system memory can be taken and used to verify that the kernel in memory is correct.
So what are attackers to do? Go deeper, of course.
Hardware-Based Rootkits and the Virtualized OS
Released in 2006 at Black Hat in Vegas, the first publicized hardware-based rootkit was called "Blue Pill" [2]. Modern CPU's from AMD and Intel include a number of features that support virtualization of operating systems. Because they no longer need to modify the operating system to work, these rootkits are harder to detect, so checking your system call table won't work. However, these rootkits do replace the Interrupt Descriptor Table (IDT), which is held within a CPU register (the IDTR) [3].
Because two IDTRs (the real one and the one being presented to the compromised operating system) now exist, the one being presented to the compromised operating system will be at a different memory location than usual. Fortunately, the privileged instruction Store Interrupt Descriptor Table (SIDT) can be run from user space and will reliably return the contents of the IDTR being presented to the operating system (which isn't very helpful because it has been compromised) and, more importantly, the memory location (which won't be in the normal location).
This appears to be a stalemate: The attackers have created new methods to hide rootkits, and the defenders have found ways to detect them.
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.
News
-
Wine 10 Includes Plenty to Excite Users
With its latest release, Wine has the usual crop of bug fixes and improvements, along with some exciting new features.
-
Linux Kernel 6.13 Offers Improvements for AMD/Apple Users
The latest Linux kernel is now available, and it includes plenty of improvements, especially for those who use AMD or Apple-based systems.
-
Gnome 48 Debuts New Audio Player
To date, the audio player found within the Gnome desktop has been meh at best, but with the upcoming release that all changes.
-
Plasma 6.3 Ready for Public Beta Testing
Plasma 6.3 will ship with KDE Gear 24.12.1 and KDE Frameworks 6.10, along with some new and exciting features.
-
Budgie 10.10 Scheduled for Q1 2025 with a Surprising Desktop Update
If Budgie is your desktop environment of choice, 2025 is going to be a great year for you.
-
Firefox 134 Offers Improvements for Linux Version
Fans of Linux and Firefox rejoice, as there's a new version available that includes some handy updates.
-
Serpent OS Arrives with a New Alpha Release
After months of silence, Ikey Doherty has released a new alpha for his Serpent OS.
-
HashiCorp Cofounder Unveils Ghostty, a Linux Terminal App
Ghostty is a new Linux terminal app that's fast, feature-rich, and offers a platform-native GUI while remaining cross-platform.
-
Fedora Asahi Remix 41 Available for Apple Silicon
If you have an Apple Silicon Mac and you're hoping to install Fedora, you're in luck because the latest release supports the M1 and M2 chips.
-
Systemd Fixes Bug While Facing New Challenger in GNU Shepherd
The systemd developers have fixed a really nasty bug amid the release of the new GNU Shepherd init system.