(Almost) undetectable hardware-based rootkits
New Generation of Rootkit
Released in September 2008 by Immunity Inc., DR RootKit [4] implements system call hooking within Linux 2.6 kernels without modifying the system call table or the interrupt descriptor table. To do this, it places a hardware breakpoint on the syscall handler. This trap places a memory watch on the syscall_table entry __NR_syscall, which is used to export system call numbers. Basically, the rootkit behaves like a debugging tool, waiting for specific system calls to be executed, and when it sees them, it modifies them on the fly. Currently, the DR RootKit hooks the system calls listed in Table 1.
The DR RootKit includes capabilities such as hiding processes and preventing hidden processes (meaning that the attacker can run software that is hidden, and you can't kill it even if you manage to guess the process ID) from being terminated. Using the examples provided with the package, it is relatively easy to extend and create additional modified system calls. For example, you might want to modify the capset so that you can set process capabilities at will. The rootkit itself is a loadable kernel module, which makes it easy to insert once you have compromised a system, but like other memory-based rootkits, a system reboot will remove it from memory.
If you want to extend the rootkit, you can insert your own custom system calls. An example is given for replacing the exit system call. Simply put, the process consists of declaring your own hook to replace a system syscall and then writing a custom system call implementation – simple, really. The best place to start is with the kernel source – specifically, the kernel/ subdirectory where most of the common system calls are defined. For example, if you have a system in which capabilities are in use to restrict what programs can and cannot do, you can modify the do_sys_capset_other_tasks system call to call a modified cap_set_all, which always returns all capabilities for a specific process ID, such as:
@@ -237,6 +237,9 @@ if (!capable(CAP_SETPCAP)) return -EPERM; + if (pid == 12345)/* magic process number*/ + return cap_set_all_evil(effective, inheritable, permitted);
As you can see, even a minor modification can have a significant effect. Suddenly, the process with ID 12345 will always have all capabilities, allowing it to do pretty much anything it wants. With just one system call, an attacker can create an effective backdoor.
Virtually the only way to detect this rootkit is through the measurement of timing or race conditions that are introduced by the rootkit. If a rootkit is present, the system should run a little slower than usual, but measuring this reliably is not an easy task, especially on production systems. Also, the software is relatively simplistic and can be extended easily to hide itself better, making detection even harder.
Alternative Approach
Of course, you can compromise a system and retain access in other ways while also staying hidden. Another penetration testing software company called Core Security [5] has taken the approach of injecting hostile code into the process that has been attacked. For example, if you exploit an Apache httpd server, you can inject code into the process that will allow you to have remote access. This technique is somewhat limited compared with a full kernel or hardware-based rootkit, and it also is less likely to affect the entire system, making it stealthier. The primary disadvantage of this technique is that operating system-level protection mechanisms, such as SELinux, will still be able to enforce security policy. However, for targeted attackers, this is often not a serious problem because they can either use local exploits to compromise the system further or stay within the behavioral confines of an SELinux policy and still extract information or use the system to execute other malicious attacks.
Conclusion
The good news is that by going to the hardware level, the attackers have (conceptually) run out of room to go. The bad news is that any number of hardware tricks can be used to maintain control over a compromised system. For example, a modern graphics card typically has direct memory access (meaning it can do pretty much anything it wants to the system memory without the operating system having much say in the process), its own onboard memory, and a large amount of processing power (to the point where people are using them as a poor man's computing cluster). Newer cards have flash memory to hold firmware that can be updated from software, and I have no doubt that one day, people will be working on how to use your video card to maintain control over a compromised system.
Infos
- "Secret Passage: Techniques for Building a Hidden Backdoor" by Amir Alsbih, Linux Magazine, April 2007: http://www.linux-magazine.com/issues/2007/77/secret_passage
- Blue Pill: http://bluepillproject.org/
- Red Pill: http://www.invisiblethings.org/papers/redpill.html
- DR RootKit: http://www.immunityinc.com/resources-freesoftware.shtml
- Core Security Technologies: http://www.coresecurity.com/
« Previous 1 2
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you've found an article to be beneficial.
News
-
Fedora 39 Beta is Now Available for Testing
For fans and users of Fedora Linux, the first beta of release 39 is now available, which is a minor upgrade but does include GNOME 45.
-
Fedora Linux 40 to Drop X11 for KDE Plasma
When Fedora 40 arrives in 2024, there will be a few big changes coming, especially for the KDE Plasma option.
-
Real-Time Ubuntu Available in AWS Marketplace
Anyone looking for a Linux distribution for real-time processing could do a whole lot worse than Real-Time Ubuntu.
-
KSMBD Finally Reaches a Stable State
For those who've been looking forward to the first release of KSMBD, after two years it's no longer considered experimental.
-
Nitrux 3.0.0 Has Been Released
The latest version of Nitrux brings plenty of innovation and fresh apps to the table.
-
Linux From Scratch 12.0 Now Available
If you're looking to roll your own Linux distribution, the latest version of Linux From Scratch is now available with plenty of updates.
-
Linux Kernel 6.5 Has Been Released
The newest Linux kernel, version 6.5, now includes initial support for two very exciting features.
-
UbuntuDDE 23.04 Now Available
A new version of the UbuntuDDE remix has finally arrived with all the updates from the Deepin desktop and everything that comes with the Ubuntu 23.04 base.
-
Star Labs Reveals a New Surface-Like Linux Tablet
If you've ever wanted a tablet that rivals the MS Surface, you're in luck as Star Labs has created such a device.
-
SUSE Going Private (Again)
The company behind SUSE Linux Enterprise, Rancher, and NeuVector recently announced that Marcel LUX III SARL (Marcel), its majority shareholder, intends to delist it from the Frankfurt Stock Exchange by way of a merger.