Optimize flash memory in Linux
Fine-tuned

Solid state drives make everything run faster and more smoothly, but you can squeeze out even more performance with some practical optimization steps.
Solid-State drives (SSDs) are quite different from old-fashioned hard disks, and you'll have to learn some new techniques if you want to tune up performance. This article highlights some important steps for optimizing SSDs.
Updating the Firmware
Firmware is just as important as hardware, and the flash chips in the SSD are no exception. Special software mechanisms such as wear leveling and garbage collection improve the efficiency of the drive; without these mechanisms, the durability and performance of the SSD would be impaired over its service life. The firmware is thus an important part of the product, and it is also under constant development, which means it is important to update the firmware.
Linux users are often a little envious when they see how easy it is to install new firmware in Windows by clicking around in a graphical interface. Intel and Samsung provide Linux binaries for their datacenter SSDs, but for their consumer products, users need to boot an ISO file.
Alignment
When SSDs first started to become more widespread, correct alignment [1] had not yet been implemented in the popular partitioning tools. Today, command-line utilities such as fdisk
, gdisk
, or parted
pay attention to correct alignment of the partitions, making sure, for example, that the first partition starts in sector 2048. The example in Listing 1 demonstrates how to correctly create a new partition and test it with align-check
.
Listing 1
Creating a Correctly Aligned Partition
01 $ sudo parted /dev/sdb mklabel gpt 02 $ sudo parted -a optimal -- /dev/sdb mkpart primary 0% 100% 03 $ sudo parted /dev/sdb align-check opt 1 04 1 aligned 05 06 $ sudo gdisk -l /dev/sdb 07 [...] 08 Number Start (sector) End (sector) Size Code Name 09 1 2048 390721535 186.3 GiB 8300 primary
Over-Provisioning
All SSDs have a spare area, that is, a reserved data area that is not directly visible to the operating system, which the SSD uses internally for the wear leveling and bad-block replacement, as well as read, modify, and write operations.
Especially with low-budget consumer SSDs without a trim
function, increasing the size of the spare area (aka over-provisioning) is a good way to improve durability and performance. However, enterprise SSDs already come with a higher gross capacity and tolerate more writes, that is, they show a larger value for Terabytes Written (TBW). The DC S3500 SSD shown in Figure 1 has 336GB flash chips for a nominal capacity of 300GB. The graph shows how the write performance improves for the 800GB model given a bigger spare area.

It is best to set up over-provisioning before an SSD goes into production operation. You have several configuration options: the first method is to set up a host-protected area (HPA) with hdparm
. To create an HPA, you'll need to delete all the blocks on the SSD. (You'll need to delete the blocks so the SSD controller will be able to actually use the hidden data areas for wear leveling later on.) The blocks are deleted for an SSD in an as-delivered state. However, if the device has already been used, you need to restore this state with a secure erase or manual trim (depending on the SSD). Typing the following:
hdparm -Np number_of_sectors /dev/sdb
sets up the host-protected area.
With the second method, you just leave an area on the SSD unpartitioned and create partitions for, say, only 90 percent of the disk's capacity. In this case as well, you need to perform a secure erase up front if the SSD was previously in use. The operation deletes and frees up all the flash cells.
The third method is to use the vendor's SSD tools, such as Intel's isdct
or Samsung's magician
.
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.

News
-
First Release Candidate for Linux Kernel 6.14 Now Available
Linus Torvalds has officially released the first release candidate for kernel 6.14 and it includes over 500,000 lines of modified code, making for a small release.
-
System76 Refreshes Meerkat Mini PC
If you're looking for a small form factor PC powered by Linux, System76 has exactly what you need in the Meerkat mini PC.
-
Gnome 48 Alpha Ready for Testing
The latest Gnome desktop alpha is now available with plenty of new features and improvements.
-
Wine 10 Includes Plenty to Excite Users
With its latest release, Wine has the usual crop of bug fixes and improvements, along with some exciting new features.
-
Linux Kernel 6.13 Offers Improvements for AMD/Apple Users
The latest Linux kernel is now available, and it includes plenty of improvements, especially for those who use AMD or Apple-based systems.
-
Gnome 48 Debuts New Audio Player
To date, the audio player found within the Gnome desktop has been meh at best, but with the upcoming release that all changes.
-
Plasma 6.3 Ready for Public Beta Testing
Plasma 6.3 will ship with KDE Gear 24.12.1 and KDE Frameworks 6.10, along with some new and exciting features.
-
Budgie 10.10 Scheduled for Q1 2025 with a Surprising Desktop Update
If Budgie is your desktop environment of choice, 2025 is going to be a great year for you.
-
Firefox 134 Offers Improvements for Linux Version
Fans of Linux and Firefox rejoice, as there's a new version available that includes some handy updates.
-
Serpent OS Arrives with a New Alpha Release
After months of silence, Ikey Doherty has released a new alpha for his Serpent OS.