Python network data visualization
Data Harvest

© Lead Image © Mark Bridger, 123RF.com
The Scapy packet manipulation program lets you analyze and manipulate packets to create incident response reports or examine network security.
Most folks have pulled up Wireshark a time or two to troubleshoot an application or system problem. During forensics, packet captures (PCAPs) are essential. Often you are looking at things like top talkers, ports, bytes, DNS lookups, and so on. Why not automate this process with Python?
Scapy [1] is a great tool suite for packet analysis and manipulation. It is most often talked about in the realm of packet manipulation, but its ability to analyze packets is also top-notch.
Make Ready
First, you need to make sure you have Python 3 installed along with the following packages:
sudo pip3 install scapy scapy_http plotly PrettyTable
To get started, you will want a PCAP to analyze. To capture 1,000 packets and save them to the file example.pcap
, enter:
~$ sudo tcpdump -c 1000 -w example.pcap tcpdump: listening on enp0s3, link-type EN10MB (Ethernet), capture size 262144 bytes 1000 packets captured 1010 packets received by filter 0 packets dropped by kernel ~$
Scapy can handle all parts of the OSI model except Layer 1 (Figure 1). Listing 1 shows the Hello World! of packet reading. To begin, you need to read a raw packet (line 5), see if it has the layer your want (line 9), and then act on it. Because you are using Python, if you try to print out pkt[IP].src
when no IP is present, Python will throw an error, so you need to wrap it in a try
/except
(lines 10-13).
Listing 1
Looking for Layers
01 #Step 1: Import scapy 02 from scapy.* import all 03 04 #Step 2: Read the PCAP usimg rdpcap 05 packets = rdpcap("example.pcap") 06 07 #Step 3: Loop and print an IP in a packet in Scapy by looking at Layer 3 08 for pkt in packets: 09 if IP in pkt: 10 try: 11 print(pkt[IP].src) // Source IP 12 except: 13 pass
Sorting
If you ran the code in Listing 1 with your example.pcap
file of 1,000 packets, your terminal printed ~1,000 lines, which is obviously not very useful. To improve, you can read all the IPs, append them to a list, then run a counter, and print the results using the PrettyTable
module (Listing 2). As before, you import Scapy, but now you will also import the collection module and PrettyTable (Step 1). Next, add an empty list, and append (Step 2). Now you can use the counter to loop through the list of IPs and create a count (Step 3); finally, using the PrettyTable
module, you print out the results in a clean table (Step 4).
Listing 2
Adding a Counter
01 #Step 1: Imports 02 from scapy.all import * 03 from prettytable import PrettyTable 04 from collections import Counter 05 06 #Step 2: Read and Append 07 srcIP=[] 08 for pkt in packets: 09 if IP in pkt: 10 try: 11 srcIP.append(pkt[IP].src) 12 except: 13 pass 14 15 #Step 3: Count 16 cnt=Counter() 17 for ip in srcIP: 18 cnt[ip] += 1 19 20 #Step 4: Table and Print 21 table= PrettyTable(["IP", "Count"]) 22 for ip, count in cnt.most_common(): 23 table.add_row([ip, count]) 24 print(table) 25 26 +-----------------+-------+ 27 | IP | Count | 28 +-----------------+-------+ 29 | 10.0.2.15 | 482 | 30 | 52.84.82.203 | 93 | 31 | 8.8.8.8 | 82 | 32 | 104.16.41.2 | 76 | 33 | 216.58.216.232 | 30 | 34 | 104.20.150.16 | 20 | 35 | 52.84.133.105 | 16 | 36 | 209.132.181.15 | 16 | 37 | 140.211.169.196 | 15 | 38 | 72.21.91.29 | 12 | 39 | 104.244.46.103 | 12 | 40 +-----------------+-------+
Visualize
Now that you know how to read packets and do some counting, you can use the Plotly package to make graphs by building on the last example (Listing 3). First, you have to add the plotly
import to Step 1 (line 1); then, after going through Steps 2 and 3 as before, you replace Step 4 in the previous example of Listing 2 with new code that creates two new lists to hold x and y data (Listing 3, lines 4-5) and loops through the IPs again, adding them to the lists (lines 7-9).
Listing 3
Making Graphs
01 import plotly 02 03 #Step 4: Add Lists 04 xData=[] 05 yData=[] 06 07 for ip, count in cnt.most_common(): 08 xData.append(ip) 09 yData.append(count) 10 11 #Step 5: Plot 12 plotly.offline.plot({ 13 "data":[plotly.graph_objs.Bar(x=xData, y=yData)] })
By default, Plotly uses its web UI to create charts, but if, like me, you use this data in a incident response situation, you do not want to share that data with a cloud system. Therefore, I use the offline version to plot my data in a new Step 5. When run, it will open your default web browser (Figure 2).
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you've found an article to be beneficial.
News
-
Arch Linux 2023.12.01 Released with a Much-Improved Installer
If you've ever wanted to install Arch Linux, now is your time. With the latest release, the archinstall script vastly simplifies the process.
-
Zorin OS 17 Beta Available for Testing
The upcoming version of Zorin OS includes plenty of improvements to take your PC to a whole new level of user-friendliness.
-
Red Hat Migrates RHEL from Xorg to Wayland
If you've been wondering when Xorg will finally be a thing of the past, wonder no more, as Red Hat has made it clear.
-
PipeWire 1.0 Officially Released
PipeWire was created to take the place of the oft-troubled PulseAudio and has finally reached the 1.0 status as a major update with plenty of improvements and the usual bug fixes.
-
Rocky Linux 9.3 Available for Download
The latest version of the RHEL alternative is now available and brings back cloud and container images for ppc64le along with plenty of new features and fixes.
-
Ubuntu Budgie Shifts How to Tackle Wayland
Ubuntu Budgie has yet to make the switch to Wayland but with a change in approaches, they're finally on track to making it happen.
-
TUXEDO's New Ultraportable Linux Workstation Released
The TUXEDO Pulse 14 blends portability with power, thanks to the AMD Ryzen 7 7840HS CPU.
-
AlmaLinux Will No Longer Be "Just Another RHEL Clone"
With the release of AlmaLinux 9.3, the distribution will be built entirely from upstream sources.
-
elementary OS 8 Has a Big Surprise in Store
When elementary OS 8 finally arrives, it will not only be based on Ubuntu 24.04 but it will also default to Wayland for better performance and security.
-
OpenELA Releases Enterprise Linux Source Code
With Red Hat restricting the source for RHEL, it was only a matter of time before those who depended on that source struck out on their own.