Overview of the Serial Communication Protocol
Testing the Code
With the Arduino's serial monitor, you can enter data directly to your Arduino. After your sketch is running, open the Serial Monitor by clicking its icon. Be sure to select 9600 baud in the lower right corner (Figure 3); then, you can type L (uppercase) to turn the LED on and l (lowercase) to turn it off.

To move the servo, enter a number between 0 and 180 followed by a period. Because the Arduino doesn't know how many digits are in your number, the period lets it know that you're done sending. Sending a number and waiting five seconds also works, because Serial.setTimeout
(Listing 1, line 13) makes sure the program doesn't stall.
Independent of the output, if the button or switch changes state, you'll get a message in the serial window. If a program were to receive this serial output, it could interpret the messages and take action on the basis of the values, as shown in the Python snippet in Listing 2.
Listing 2
Python Serial Transmitter
01 import serial 02 import time 03 ser = serial.Serial('/dev/ttyAMA0') # open the Arduino serial port 04 05 while 1: 06 ser.write('L') # turn the LED on 07 time.sleep ( 1 ) # wait a second 08 ser.write ( 'l' ) # turn the LED off 09 time.sleep (1) 10 ser.close() # close port
Controlling the LED
As with any Python program, import
brings in an external library. In this case, line 1 is the interface to serial ports [4], and line 2 is the time module, which provides the sleep
function.
The serial.Serial
function opens a serial port. The only required argument is the port name. In this case, /dev/ttyAMA0
is the Arduino. Without any other parameters, communication will default to 9600 baud, 8N1 (data, parity, stop bits).
The infinite loop (lines 5-9) sends an uppercase L out the serial port (line 6), waits one second (line 7), sends a lowercase l out the serial port (line 8), and waits one second (line 9). Although line 10 will never be reached in this example, ser.close
shuts down a port. Python also takes care of the port if the program terminates.
Once you've programmed the Arduino, run the Python snippet, and your LED should start blinking. Of course, you can now change the timing or send other commands by modifying the desktop program instead of reprogramming the Arduino. This arrangement can be very handy if the Arduino is embedded in another piece of equipment (or suspended 30 feet in the air).
Listening to Inputs
The Python code in Listing 3 reports the changing states of the button and switch. The infinite loop that starts in line 4 gets a line from the serial port with ser.readline
(line 5) and splits it at the colon (line 6). To the left of the colon, the string will either be Switch
or Button
. If it is Switch
(line 7) and the status (right of the colon, statusParts[1]
) is
, then the switch is ON (line 8). Otherwise the switch is off (line 9). Lines 10-12 work the same way, except it checks and reports the state of the button.
Listing 3
Python Serial Receiver
01 import serial 02 ser = serial.Serial('/dev/ttyAMA0') # open the Arduino serial port 03 04 While 1: 05 status = ser.readline() 06 statusParts = status.split ( ":" ) 07 If statusParts [ 0 ] == "Switch": 08 If statusParts [ 1 ] == "0": print ( "The switch is ON" ) 09 Elif statusParts [ 1 ] == "1": print ( "The switch is OFF" ) 10 Elif statusParts [ 0 ] == "Button": 11 If statusParts [ 1 ] == "0": print ( "The button is pressed" ) 12 Elif statusParts [ 1 ] == "1": print ( "The button is released" )
When you run the snippet in Listing 3 and fiddle with the button and switch, you should see messages announcing the changes in state in the terminal. Although this example just shows a message, it is not hard to see how this could trigger other code.
Buy Linux Magazine
Direct Download
Read full article as PDF:
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
News
-
Mageia 9 Beta 2 is Ready for Testing
The latest beta of the popular Mageia distribution now includes the latest kernel and plenty of updated applications.
-
KDE Plasma 6 Looks to Bring Basic HDR Support
The KWin piece of KDE Plasma now has HDR support and color management geared for the 6.0 release.
-
Bodhi Linux 7.0 Beta Ready for Testing
The latest iteration of the Bohdi Linux distribution is now available for those who want to experience what's in store and for testing purposes.
-
Changes Coming to Ubuntu PPA Usage
The way you manage Personal Package Archives will be changing with the release of Ubuntu 23.10.
-
AlmaLinux 9.2 Now Available for Download
AlmaLinux has been released and provides a free alternative to upstream Red Hat Enterprise Linux.
-
An Immutable Version of Fedora Is Under Consideration
For anyone who's a fan of using immutable versions of Linux, the Fedora team is currently considering adding a new spin called Fedora Onyx.
-
New Release of Br OS Includes ChatGPT Integration
Br OS 23.04 is now available and is geared specifically toward web content creation.
-
Command-Line Only Peropesis 2.1 Available Now
The latest iteration of Peropesis has been released with plenty of updates and introduces new software development tools.
-
TUXEDO Computers Announces InfinityBook Pro 14
With the new generation of their popular InfinityBook Pro 14, TUXEDO upgrades its ultra-mobile, powerful business laptop with some impressive specs.
-
Linux Kernel 6.3 Release Includes Interesting Features
Although it's not a Long Term Release candidate, Linux 6.3 includes features that will benefit end users.