Stream processing made easy with Apache StreamPipes
Space Flyby
You don't need to be a stream processing expert to create useful custom solutions with Apache StreamPipes. We'll use StreamPipes to build a simple app that calculates when the International Space Station will fly overhead.
Our modern world is increasingly dependent on continuous data streams that generate large volumes of data in real time. These streams might come from science experiments, weather stations, business applications, or sensors on a factory shop floor. Many of the software systems that interact with these data streams follow an architecture in which events drive individual components. Continuous data sources (producers) such as sensors trigger events, and various components (consumers) process them. Producers and consumers are decoupled using a middleware layer that handles the distribution of the data, usually in the form of a message broker. This approach reduces complexity, because any number of services can receive and process incoming data streams virtually simultaneously. This flexible architecture gives rise to a new generation of tools that provide users with an easy way to create custom solutions that process data from incoming streams. One example is the open source framework Apache StreamPipes [1].
StreamPipes has been an incubator project at the Apache Software Foundation since November 2019 and is part of a growing number of solutions for the Internet of Things (IoT). The StreamPipes toolbox [2] is aimed at business users with limited technical knowledge. The main goal is to make stream-processing technologies accessible to nonexperts. Various modules are available to connect IoT data streams from a variety of sources, to generate analyses of these data streams, and to examine live or historical data.
StreamPipes offers a variety of connectors and algorithms for analyzing industrial data, with the focus on integrating data from the production and automation environment. But users without access to their own production line can also benefit from StreamPipes: For example, real-time data from publicly available APIs and widely used protocols such as MQTT can be used to connect existing data sources.
One important StreamPipes component is the Pipeline Editor. Users can rely on graphical, dataflow-oriented modeling to independently generate processing pipelines that the underlying stream processing infrastructure then automatically executes. On the application side, StreamPipes is useful for applications such as continuous monitoring (e.g., condition monitoring), detection of time-critical situations, live computation of key performance indicators, and integration of machine learning models. Figure 1 provides a rough overview of StreamPipes, from data connection, processing, and analysis through to deployment.
Stream Processing Made Easy
Figure 2 shows the different layers of the StreamPipes architecture. Most users will want to connect existing data streams in the first step. For this purpose, StreamPipes provides a library with the StreamPipes Connect module to connect data based on standard protocols or certain special systems already supported by StreamPipes. Connect adapters, which can also be installed on lightweight edge devices such as Raspberry Pis, handle the task of collecting and forwarding data streams to the internal message broker – Apache Kafka is used under the hood. In the Connect adapters, users can define their own transformation rules (e.g., to convert value units).
One layer above the transport layer are reusable algorithms (e.g., for detecting statistical trends, preprocessing data, or image processing), each of which encapsulates a specific function and is available as an event-driven microservice. In addition to algorithms, StreamPipes also provides data sinks in this way, such as connectors for databases or dashboards.
Each individual microservice provides a machine-readable description of the algorithm's requirements and functionality. For example, certain required data types or measurement units can be specified that the data stream must provide to initialize the component. The algorithm kit can be extended at runtime with a software development kit, so that the user can install additional algorithms at any time, when new requirements arise, without restarting the application.
Users interact with the web-based front end, which makes it easy to build pipelines by linking data streams with algorithms and data sinks. In contrast to other graphical tools for modeling data flows, StreamPipes integrates a matching component directly into the core application. This component continuously checks the consistency of processing pipelines while the model is being built and relies on semantic checking to prevent modeling of faulty connections.
From Data to Application in a Few Clicks
For an example of a simple StreamPipes application, consider the International Space Station (ISS). Scientists rely on an open API to determine the current position of the ISS in its orbit around the Earth. The goal of the StreamPipes application will be to calculate other key figures based on incoming data and display the results on a live dashboard.
First you will need to install StreamPipes. The easiest way to set up StreamPipes is to use a Docker-based installation (Listing 1), which downloads and starts all the required components. Both Docker and Docker Compose must be present on the system; Docker needs a RAM allocation of 2 to 3GB.
Listing 1
Install and Launch StreamPipes
# download and unzip latest release from streampipes.apache.org/download.html $ cd incubator-streampipes-installer/compose $ docker-compose up -d
During the initial installation, the Docker images for StreamPipes and other images used in the background (for example, Apache Kafka) are loaded. Once the system is started, you can complete the setup in a web browser. By default, the interface is accessible on port 80. After you log in with your choice of user credentials (they are only saved locally), the StreamPipes welcome page appears (Figure 3).
Simple IoT Data Connection with Connect
The first step is for the application to receive the position data of the ISS as a continuous data stream. For this purpose, you need to change to the Connect module. The data marketplace, which is now visible, shows you the existing adapters, each of which can be configured individually (Figure 4). For example, you will find generic adapters for MQTT, PLC controls, Kafka, or databases, as well as some specific adapters for source systems such as Slack. For this ISS application, I will use the preconfigured ISS Location adapter.
Each adapter has a wizard to configure the required parameters. In this case, the matching adapter generates an event with only three parameters: a timestamp and the coordinates of the current ISS location (latitude and longitude in WGS84 format).
At the end of the wizard, assign a name to the new adapter (here ISS-Location) and start the process. From now on, regular updates of the ISS position will reach the underlying Apache Kafka infrastructure. A quick look at the pipeline editor shows a new icon in the Data Streams tab.
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.
News
-
New KDE Slimbook Plasma Available for Preorder
Powered by an AMD Ryzen CPU, the latest KDE Slimbook laptop is powerful enough for local AI tasks.
-
Rhino Linux Announces Latest "Quick Update"
If you prefer your Linux distribution to be of the rolling type, Rhino Linux delivers a beautiful and reliable experience.
-
Plasma Desktop Will Soon Ask for Donations
The next iteration of Plasma has reached the soft feature freeze for the 6.2 version and includes a feature that could be divisive.
-
Linux Market Share Hits New High
For the first time, the Linux market share has reached a new high for desktops, and the trend looks like it will continue.
-
LibreOffice 24.8 Delivers New Features
LibreOffice is often considered the de facto standard office suite for the Linux operating system.
-
Deepin 23 Offers Wayland Support and New AI Tool
Deepin has been considered one of the most beautiful desktop operating systems for a long time and the arrival of version 23 has bolstered that reputation.
-
CachyOS Adds Support for System76's COSMIC Desktop
The August 2024 release of CachyOS includes support for the COSMIC desktop as well as some important bits for video.
-
Linux Foundation Adopts OMI to Foster Ethical LLMs
The Open Model Initiative hopes to create community LLMs that rival proprietary models but avoid restrictive licensing that limits usage.
-
Ubuntu 24.10 to Include the Latest Linux Kernel
Ubuntu users have grown accustomed to their favorite distribution shipping with a kernel that's not quite as up-to-date as other distros but that changes with 24.10.
-
Plasma Desktop 6.1.4 Release Includes Improvements and Bug Fixes
The latest release from the KDE team improves the KWin window and composite managers and plenty of fixes.