Perl script monitors visitor statistics for YouTube movies
Chart Stormers

Hobby YouTuber Mike Schilli is interested in whether his videos go viral. What better way to check skyrocketing viewer numbers than letting a Perl script analyze the daily trends and watch for unexpected upswings?
When a hardware hacker like myself faces a seemingly unsolvable mechanical problem – for example, when a gadget resists warranty-invalidating opening – you can typically find a solution on YouTube. And, if you need to use a less-than-intuitive program like GIMP, you will typically find an expert screencast on YouTube to help you solve complex problems, even as a newbie.
Dreamship
When I recently managed to use GIMP's Scissor Select tool successfully, I decided to create a screencast. Then, I waited for this masterpiece of movie magic to hit the charts on YouTube. I initially set monthly reminder dates in Evernote to check the number of views by hand at regular intervals. However, that got old pretty quickly, so thanks to the CPAN WebService::GData::YouTube module, I managed to fully automate the process.
For this to happen, the YAML file in Listing 1 lists the IDs of the movies to monitor [1]. I simply extracted the hex numbers from my videos' YouTube URLs. For example, the _Cxu3-UP0G8
string for the GIMP video was simply cut and pasted from the URL line in the browser displayed in Figure 1.
Listing 1
youtube-watch.yml

The script in Listing 2 uses the CPAN YAML module to walk through the entries in the YAML file; it passes the movie ID to the get_video_by_id()
method in the WebService::GData::YouTube package on every iteration. The method in turn contacts the YouTube API server and receives a mess of metadata about the movie. Below the _feed
key, the script finds the yt$statistics
entry with the value for ViewCount
– you guessed it, the number of times the movie was requested by interested viewers.
Listing 2
youtube-viewcounts
Lines 23 and 24 quickly convert the output, with some help from the CPAN JSON module, to a machine-readable format; this allows for easier post-processing by a script like Listing 3. They set the pretty
option to make the output easier for human consumers to understand and canonical
to sort the hash keys alphabetically, which would otherwise be in random order in Perl. In the resulting array (@result
), each element contains the name
(movie title), count
(the view count added by line 17), and id
(the unique YouTube ID of the movie).
Listing 3
viewcounts-todb
Figure 2 shows the output from the script and reveals that my previously little-known sideline as a car mechanic working on 20-year-old Honda engines is one of the highlights of my oeuvre with no fewer than 56,000 views, whereas the GIMP screencast has a miserly 297 views to date.
Daily Tests
If you run Listing 1 once a day as a cronjob, the next logical thing to do is to archive and later evaluate the data. For this, Listing 3 employs a SQLite mini-database that stores its data in a single file but still supports SQL queries.
The database schema generated in Listing 4 contains fields for every movie's YouTube ID (video_id
), the number of views (views
) and the date stamp of the query (queried
). The command
Listing 4
viewcounts.sql
sqlite3 viewcounts.db <viewcounts.sql
tells SQLite to create a database in the new viewcounts.db
file. Listing 3 can then fire as a second stage in the command pipe
youtube-viewcounts | viewcounts-todb
to receive the JSON data generated by Listing 2 and create a database record for each array entry.
The script fills the table's date field for each new entry in line 16 of Listing 3 with CURRENT_TIMESTAMP
; SQLite replaces this in the database with the current date and time. This step gives you a database entry with a time stamp for each monitored movie and day, and you can easily retrieve the entries sorted by time.
Based on the database entries shown in Figure 3, Listing 5 now tries to find out whether the viewer figures are continually increasing or possibly skyrocketing. In this case, I want the script to alert me.
Listing 5
hit-detect
Hit or Miss?
How do you define skyrocketing, though? For a movie with 30,000 views, which increases by about 10 views a day, these 10 hits don't mean much. However, if you have a less successful movie that remains undiscovered for a long time, and then suddenly has 10 views, you might like to be notified.
Because I recently read an excellent book titled Machine Learning with R [2], which explains all kinds of statistical methods, I had the idea of determining unusual jumps in the viewing figures by means of linear regression [3]. This involves the CPAN Statistics::LineFit module used by Listing 5 trying to make a straight line out of flatlining or continually increasing historic viewing figures (Figure 4). The x axis denotes time from left to right, and the y axis represents the number of views for the current measuring point.

It doesn't matter that the straight line doesn't hit each measuring point precisely (in fact, it's not even possible in most cases), as long as the linear regression keeps the unavoidable errors to a minimum. The problem was solved by scientists back in the dark ages, and the CPAN module simply implements the algorithm to compute the a and b parameters from the linear formula y = b+ax. The b parameter expresses the y value at the origin of the x axis (intercept), and the a parameter gives you the gradient of the linear approximation (slope).
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you've found an article to be beneficial.
News
-
2024 Open Source Professionals Job Survey Now Open
Share your expectations regarding open source jobs.
-
Arch Linux 2023.12.01 Released with a Much-Improved Installer
If you've ever wanted to install Arch Linux, now is your time. With the latest release, the archinstall script vastly simplifies the process.
-
Zorin OS 17 Beta Available for Testing
The upcoming version of Zorin OS includes plenty of improvements to take your PC to a whole new level of user-friendliness.
-
Red Hat Migrates RHEL from Xorg to Wayland
If you've been wondering when Xorg will finally be a thing of the past, wonder no more, as Red Hat has made it clear.
-
PipeWire 1.0 Officially Released
PipeWire was created to take the place of the oft-troubled PulseAudio and has finally reached the 1.0 status as a major update with plenty of improvements and the usual bug fixes.
-
Rocky Linux 9.3 Available for Download
The latest version of the RHEL alternative is now available and brings back cloud and container images for ppc64le along with plenty of new features and fixes.
-
Ubuntu Budgie Shifts How to Tackle Wayland
Ubuntu Budgie has yet to make the switch to Wayland but with a change in approaches, they're finally on track to making it happen.
-
TUXEDO's New Ultraportable Linux Workstation Released
The TUXEDO Pulse 14 blends portability with power, thanks to the AMD Ryzen 7 7840HS CPU.
-
AlmaLinux Will No Longer Be "Just Another RHEL Clone"
With the release of AlmaLinux 9.3, the distribution will be built entirely from upstream sources.
-
elementary OS 8 Has a Big Surprise in Store
When elementary OS 8 finally arrives, it will not only be based on Ubuntu 24.04 but it will also default to Wayland for better performance and security.