Smart research using Elasticsearch
More, Please

Websites often offer readers links to articles about similar topics. Using Elasticsearch, the free search engine, is one way to find related documents instantly and automatically.
When people rummage around on the StackOverflow website looking for advice on programming questions, they can find list of links to related topics in the Related section (Figure 1). This helps users if the first search result didn't show what they expected or the located resource is insufficient. According to Gormley and Tong [1], Elasticsearch [2] [3], the free search engine, generates these links on the website in real time from the growing and very impressive collection of 10 million StackOverflow contributions.

Artificial Brain
This isn't actual intelligence at work, because computers still find it difficult to understand the content of a document, meaning they can't find documents with related content. In fact, the algorithm used is based on simple nitpicking – it combines values for word frequency and derives a score from those values.
Elasticsearch uses an inverted index for this task; this index is a complete list of individual words that appear in any of the documents that have been added to the search engine so far. It remembers which document each word has been found in and can therefore instantly output a list of documents for a search term.
For example, if a user is looking for the term perl, Elasticsearch will immediately find the doc-1 document in the inverted index from Figure 2 and present this (one hopes) accurate search result.

When searching for two words (e.g., linux and cpan), two documents come into consideration, but because doc-2 only contains one term, whereas doc-3 contains both, the algorithm gives doc-3 a higher relevance score. In a match list sorted by descending score, doc-3 is then at the very top and is more likely to match the user's expectations.
What Is Relevant?
Not all words are equally important. For example, the word file understandably comes up in quite a large number of documents on computer topics. If the user searches for file linux cpan, doc-2 and doc-3 provide two matches each, but because linux is more significant for one document than file, the algorithm rates linux cpan higher than cpan file and gives doc-3 preference.
The Tf-idf score [4] determines how important a word is within a document. It gives a high value to those words that are prevalent in one document but do not occur too frequently in other documents competing for a high score (i.e., words that underpin the uniqueness of the document). A word's relevance value increases with the number of times the word appears in the document (this is known as term frequency, TF) and decreases if the word also appears in many other documents in the collection (IDF, inverse document frequency).
Searching for the Same
To find documents in the database that are similar to document x, Elasticsearch first extracts all relevant words from x, then forms a search query using these words and returns the results. Elasticsearch performs this search for similar documents using the more_like_this
query [5] command with very little programming required. However, all the relevant documents must be added to the index beforehand. I'll be using the official Perl client Search::Elasticsearch from CPAN for this.
Listing 3 (described later) wades through a directory of text files. These are stories from my Usarundbrief.com blog that I extracted from the home-grown content management system via another Perl script. Each text file corresponds to a blog entry – 877 messages accumulated over almost 20 years, which is why the directory contains 877 files. Listing 1 shows the shell output [6].
Listing 1
Feed Data
$ ls idx | wc -l 877 $ mlt-index Added 10-cents-for-a-grocery-bag.txt Added a-job-for-angelika.txt Added absurd-and-funny-american-tv-shows.txt ...
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Direct Download
Read full article as PDF:
Price $2.95
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Find SysAdmin Jobs
News
-
KDE Plasma 5.27 Beta is Ready for Testing
The latest beta iteration of the KDE Plasma desktop is now available and includes some important additions and fixes.
-
Netrunner OS 23 Is Now Available
The latest version of this Linux distribution is now based on Debian Bullseye and is ready for installation and finally hits the KDE 5.20 branch of the desktop.
-
New Linux Distribution Built for Gamers
With a Gnome desktop that offers different layouts and a custom kernel, PikaOS is a great option for gamers of all types.
-
System76 Beefs Up Popular Pangolin Laptop
The darling of open-source-powered laptops and desktops will soon drop a new AMD Ryzen 7-powered version of their popular Pangolin laptop.
-
Nobara Project Is a Modified Version of Fedora with User-Friendly Fixes
If you're looking for a version of Fedora that includes third-party and proprietary packages, look no further than the Nobara Project.
-
Gnome 44 Now Has a Release Date
Gnome 44 will be officially released on March 22, 2023.
-
Nitrux 2.6 Available with Kernel 6.1 and a Major Change
The developers of Nitrux have officially released version 2.6 of their Linux distribution with plenty of new features to excite users.
-
Vanilla OS Initial Release Is Now Available
A stock GNOME experience with on-demand immutability finally sees its first production release.
-
Critical Linux Vulnerability Found to Impact SMB Servers
A Linux vulnerability with a CVSS score of 10 has been found to affect SMB servers and can lead to remote code execution.
-
Linux Mint 21.1 Now Available with Plenty of Look and Feel Changes
Vera has arrived and although it is still using kernel 5.15, there are plenty of improvements sure to please everyone.